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Abstract. Territory design can be defined as the problem of grouping
small geographic units into larger geographic clusters called territories in
such a way that the latter satisfy certain planning criteria. A stochastic
version of a commercial territory design problem in presence of uncer-
tain demands is addressed in this work. The objective is to minimize
the territory imbalances with respect to the product demand subject to
planning criteria such as territory connectivity, compactness, and balance
with respect to the number of customers. A tabu search metaheuristic
for large instances is developed for this problem. The proposed method
incorporates advanced techniques such as strategic oscillation and spe-
cific neighborhood exploration strategies. Empirical evidence shows the
value of using such advanced techniques. To the best of our knowledge,
this is the first study addressing the stochastic nature of the demand in
a commercial territory design problem.

Keywords: Commercial territory design, metaheuristics, tabu search,
stochastic programming.

1 Introduction

In the general context, the territory design problem (TDP) may be viewed as the
problem of grouping small geographic basic units (BUs) into larger geographic
clusters, called territories, in such a way that the territories are acceptable (or op-
timal) according to certain planning criteria. This problem belongs to the family
of districting problems that have a broad range of applications such as politi-
cal districting (Hojati [1], Ricca and Simeone [2], Mehrotra et al. [3], Bozkaya
et al. [4]) and sales territory design (Zoltners and Sinha [5], Fleischmann and
Paraschis [6], Drexl and Haase [7]) to name the most relevant. The reader can
find an extensive survey on approaches to districting problems in the works of



Kalcsics et al. [8] and Duque et al. [9]. The problem addressed in this paper is a
commercial territory design problem motivated by a real-world application from
the bottled beverage distribution industry. Given a set of city blocks, where two
different activities are present in each block (number of customers and product
demand)the firm wants to partition the area of the city into disjoint territories
according to several criteria such as:(i) Balanced territories: Territories must
be similar in size, with respect to each of the two block activity measures; (ii)
connectivity: For each formed territory, BUs can reach each other by traveling
within the territory; (iii) compactness: BUs assigned to a territory are relatively
close to each other and (iv) a fixed number of territories.

Several variations of the deterministic version of this problem (that is, when
the demands are known) have been studied in the past; however, the stochas-
tic version of the problem has not been addressed before to the best of our
knowledge. This work introduces the stochastic version of the commercial ter-
ritory design problem (STDP) that considers the uncertainty of the customers
demand. A solution approach based on tabu search (Glover [10]) is proposed
to obtain solutions for this problem. The proposed algorithm incorporates ad-
vanced mechanisms to improve the local search performance such as strategic
oscillation, a dynamic neighborhood generation technique and a candidate list
strategy. Our empirical work includes an evaluation of the algorithmic perfor-
mance of the proposed approach. Computational experiments report that the
quality of feasible solutions is improved when these strategies are employed in
the local search phase.

2 Problem Statement

Let G = (V,E) be an undirected graph, where V is the set of nodes (city blocks)
and E is the set of edges that represents adjacency between blocks. That is, a
block or basic unit (BU) is associated with a node j ∈ V , and an edge connecting
nodes i and j exists if BUs i and j are located in adjacent blocks. Multiple
attributes are associated to each block j ∈ V such as geographical coordinates
(cjx, c

j
y), number of customers denoted by wj and sales volume (product demand)

which is a discrete random variable ξj with realizations indexed by ω ∈ Ω.
The number of territories p is fixed and is given as a parameter. It is required
that each node is assigned to only one territory. A p-partition of the set V is
denoted by X = (X1, . . . , Xp) where Xk ⊂ V is called a territory of V . Let
w(Xk) =

∑

i∈Xk
wi denote the number of customers in the territory Xk. The

balancing requirement with respect to the number customers is modeled by
introducing a tolerance parameter τ . This tolerance parameter is user specified
and it represents a limit on the maximum deviation from an ideal target allowed.
This target value is given by the average size µ =

∑

i∈V wi/p. Another important
feature is that all of the nodes assigned to each territory are connected by a path
contained totally within the territory (i.e., each of the territories Xk must induce
a connected subgraph of G). Figure 1 illustrates the balancing and connectivity
constraints. In addition, it is required that in each of the territories, blocks
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Fig. 1. Illustration of balancing and connectivity.

must be relatively close to each other. To account for this, we use a dispersion
measure based on the p-center problem (pCP) and a maximal distance T for the
dispersion of the territories is set. The dispersion of a territory Xk is given by
maxk=1,...,pmaxj∈Xk

{

dc(k),j
}

, where c(k) denotes the index of the center of the
territory Xk, and is determined by:

c(k) = arg min
j∈Xk

min
i∈Xk

{dij} .

Location of territory centers is not a requirement of the problem but a feature
of the proposed formulation that was adopted for convenience when measuring
dispersion of territories. Finally, the objective is to minimize the territory im-
balances with respect to the stochastic demand. Let Π be the collection of all
p-partitions of V and let W (Xk) =

∑

j∈Xk
ξj be the size of demand in the ter-

ritory Xk. The combinatorial optimization model is given as follows:

Model (STDP)

min
X∈Π

f(X) = E

[

max
k∈K

{W (Xk)}

]

(1)

subject to:
w(Xk)

µ
∈ [(1− τ), (1 + τ)] k ∈ K, (2)

max
k=1,...,p

max
j∈Xk

{

dc(k),j
}

≤ T, (3)

Gk = G (Vk, E(Vk)) is connected k ∈ K. (4)

Objective (1) minimizes the territory imbalances with respect to the product de-
mand by minimizing the expectation of the maximum territory size with respect
to the product demand. Constraints (2) represent the territory balance with re-
spect to the number of customers as it establishes that the size of each territory
with respect to this attribute must lie within a range (measured by tolerance
parameter τ) around its average size. Constraint (3) establishes a compactness
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measure as it limits the maximum distance between a territory center and its
assigned BUs. This parameter can be a policy established by the firm. Therefore,
the problem can be formally described as finding a p-partition of the graph G
that meets balance, connectivity and compactness constraints and minimizes the
territory imbalances with respect to stochastic customer demands. This problem
has been modeled in terms of integer programming and empirically validated us-
ing the Branch and Bound (B&B) procedure implemented by the commercial
solver CPLEX 11.2. Small instances of just 20 nodes, 2 territories and 3 demand
scenarios were solved to optimality. Due to the fact that real-world instances
are even greater than 500 nodes, the use of a heuristic procedure is proposed. A
tabu search procedure was developed and tested on a collection of data instances
obtaining promising results.

3 Tabu search approach to STDP

Tabu search (Glover and Laguna [11]) is a well-known metaheuristic that has
been widely used for successfully solving many combinatorial optimization prob-
lems. Particularly, in political districting, TS has shown an efficient perfor-
mance [4]. Tabu search guides a local search procedure to explore the solution
space beyond local optimality. Starting from an initial solution, TS iteratively
moves from the current solution to its best neighbor, even if this new solution
is worse than the one available, until a pre-specified stopping criterion is met.
In order to avoid cycling and becoming trapped in local optima, certain moves
(or solution attributes) that lead to previously explored regions are forbidden
(i.e.,classified as tabu), forming the short-term memory of TS. The tabu status of
a move may be overriden making it an allowable move if an aspiration criterion is
satisfied (if, for instance, the tabu move leads to a new best solution). The tabu
tenure is the length of time during which a certain move is classified as tabu.
It can be kept constant or varied dynamically throughout the search. These key
aspects of the TS algorithm tailored to STDP in this paper are described below.

3.1 Initial solution generation

At a given iteration, the construction phase consists of building p territories si-
multaneously in such a way that connectivity is always satisfied while infeasibil-
ity in terms of balance and dispersion is allowed to some extent. This procedure
starts by selecting p territory seed centers c(1), . . . , c(p) which are the first BUs
assigned to each territory (i.e., c(k) ∈ Xk, k ∈ K = {1, . . . , p}). Selecting seed
centers by using a purely random approach could lead to obtain inappropriate
initial territory centers (e.g., centers close to each other). To avoid this, the prob-
lem of choosing an appropriate set of p initials seeds is viewed as a p-Dispersion
Problem (Erkut et al. [12]). Territories are then built iteratively in three stages.
In the first stage, a fraction δ of the total of BUs are iteratively assigned to
territories by considering the threshold distance T and connectivity. At each it-
eration, a BU i ∈ V is assigned to an adjacent territory Xk∗ (i.e., the basic unit
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i is connected by an edge to a BU already assigned to Xk∗) such that:

k∗ = arg min
k∈KT (i)

E [max {W (X1), . . . ,W (Xk ∪ {i}), . . . ,W (Xp)}] , (5)

where KT (i) = {k ∈ K|dc(k),i ≤ T}. The latter process is iterated until a frac-
tion δ of the total of BUs have been assigned to p territories, where the centers
c(1), . . . , c(p) are updated every L iterations. From this stage, the p territories
have been built through a greedy function that completely ignores the customer
balance constraints. The rationale behind this is that at the start of the con-
struction phase all territories are likely to violate these constraints thus it is not
suitable to penalize them until they have a considerable size with respect to this
activity measure. The second stage of the construction phase tries to assign the
remaining nodes that were not assigned in stage one. For this stage a BU is
assigned to an adjacent territory by considering both the objective function and
balance constraints. For each basic unit i ∈ V , the cost of assign it to a territory
Xk, k ∈ KT (i) is evaluated according to the following merit function:

φk(i) = λ

(

1

γ

)

E [max {W (X1), . . . ,W (Xk ∪ {i}), . . . ,W (Xp)}]

+ (1− λ)

(

1

µ

)

max {w(Xk ∪ {i})− (1 + τ)µ, 0} (6)

where γ =
∑

i∈V E(ξi)/p (i.e., the expected value for the average size of demand
in the territories), is used for normalizing the objective function. The second
term of the Equation (6) represents the represents the relative infeasibility with
respect to the upper bound of the balance requirement. Both factors objective
function and balancing infeasibility are weighted by a parameter λ. A candidate
list (RCL) restricted by a quality parameter α is constructed, from which a
territory is randomly selected to assign the current basic unit. The process is
repeated for every basic unit i. If a territory exceeds the average weight for
the number of customers it is considered closed and no further node can be
assigned to it. The latter process iterates until no basic unit can be assigned to a
territory within the threshold distance T , or every territory is considered closed
or if all BUs have been assigned. Since previous stages do not guarantee that all
nodes will be assigned to a territory, a final stage is applied in which unassigned
nodes are assigned by using Equation (5) or to their nearest adjacent territory
in case that no territory center is within the maximal dipersion distance. We
now describe the mechanisms for improving the constructed initial solution.

3.2 Neighborhood generation

The aim of the local search is to improve the objective function and at the same
time to reduce the infeasibilities of the balance and the compactness constraints
as much as possible. Insert moves and pairwise exchanges (swaps) are frequently
used move types for neighborhood generation in combinatorial problems. Let
Xt(i) denotes the territory to which node i belongs, t(i) ∈ 1, . . . , p we next
define two different moves for the neighborhoods construction:
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– moveA(i, k): An insertion move reassign a basic unit i from its current ter-
ritory Xt(i) to another territory Xk; t(i) 6= Xk; t(i), k ∈ 1, . . . , p.

– moveB(i, j): A swap move exchanges basic units i and j between its respec-
tive territories Xt(i) Xt(i) and Xt(j); t(i) 6= t(j); t(i), t(j) ∈ 1, . . . , p.

Connectivity must be kept, then only moves moveA(i, k) where Xt(i)\ {i}
remains connected and for any l ∈ Xk, ∃(i, l) ∈ E are allowed. The same criteria
apply for moves moveB(i, j). We denote as NA(X) and NB(X) the neighbor-
hoods of a solution X generated from moveA(i, k) and moveB(i, j) respectively.

3.3 Merit function and strategic oscillation

A variant of the objective function is used to guide the local search phase. This
function weights the objective function value and the infeasibility with respect
to the compactness and balancing constraints is used. Specifically, the merit
function for a given territory design X = (X1, . . . , Xp) is given by:

F (X) =

(

1

γ

)

E [g(X)] + β1f1(X) + β2f2(X), (7)

where,

g(X) =

(

1

γ

)

max
k=1,...,p

{W (Xk)} (8)

f1(X) =

(

1

dmax

)

max
k=1,...,p

{

max
j∈Xk

{

dc(k),j
}

− T, 0

}

(9)

f2(X) =

p
∑

k=1

(

1

µ

)

max {w(Xk)− (1 + τ)µ, (1− τ)µ− w(Xk), 0} (10)

Then, the quality of a move is determined by (7). Equation (8) is the normal-
ized objective function. Expresion (9) represents the relative infeasibility with
respect to the compactness requirement. Equation (10) is the sum of all relative
infeasibilities of the balancing constraints. Finally, β1 and β2 are penalty param-
eters to be dynamically updated according to strategic oscillation (Glover [13]).
The penalty coefficients are then self-adjusted each r iterations. If compactness
constraint was violated in all the r∗ previous solutions, then β1 = ψβ1, ψ > 1
and the same occurs with β2 when the balance constraints are violated in all r∗

previous solutions. If all r∗ previous solutions were feasible, the values of both
parameters are reduced as follows: βq = 1

ψ
βq, q = 1, 2, ψ > 1. Otherwise βq

remains unchanged. The factor ψ as well as the values for r and r∗ are user-
defined parameters. With this strategy we can guide the search to a larger space
by allowing infeasible moves.

3.4 Neighborhood exploration strategy

The proposed TS uses a dynamic neighborhood exploration strategy. The neigh-
borhood structure is not a static set as it can change according to an infeasibility
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threshold ǫ ∈ [0, 1]. Since insertion moves are expected to perform a better job
than swap moves in terms of recovering feasibility with respect to balancing con-
straints, then if the sum of relative infeasibilities in a solution X is greater than
a threshold ǫ (i.e., f1(X)+f2(X) > ǫ), the neighborhood NA(X) is constructed,
otherwise the neighborhood structure NA(X) ∪NB(X) is then considered.

3.5 Recency-based memory and tabu tenure

Whenever a moveA(i, k) or moveB(i, j) is performed, any move that puts the
BU i back into territory t(i) or BU j back into territory t(j) is declared tabu and
forbidden for the next θ iterations. In this study θ is randomly selected in some
interval [θmin; θmax] following a uniform distribution, where θmin and θmax are
user-defined parameters. Then, a new tabu tenure is generated for the attributes
that becomes tabu at a given iteration. This is a well known strategy in TS
literature to induce a good balance between intensification and diversification
(see [14]). The tabu status of a move is overridden making it allowable if such
move leads to a new best solution.

3.6 Candidate list strategy

Considering every possible move from the current solution to select the best
neighbor may be extremely time consuming and computationally expensive. A
list of candidates is proposed were only those moves involving the k1 worst
territories with respect to quality (i.e., those with larger demand) and the worst
k2 with respect to infeasibility (i.e., those with the highest values f1 + f2) are
considered. The aim of this selection is to avoid performing moves that do not
reflect a significant improvement in the evaluation of the merit function.

4 Computational evaluation

In this section we present the preliminary experimental results on the strategic
oscillation and the neigborhood exploration mechanism in our local search al-
gorithm. The proposed TS was coded in C++ and all experiments were carried
out on a Intel Core i5, 2.30 GHz computer. For the experiments, we generated
randomly problem instances based on real-world data provided by the industrial
partner. This data set is generated according to the characteristics described
in [15]. In that work, full details on how the instances are generated can be found.
We experimented with 10 instances of each size (n, p) ∈ {(100, 6), (500, 10)}. For
all instances, the allowable deviation for the balancing constraints was set at 5%
(τ = 0.05). For this preliminar study, the random demand is described by 10
discrete scenarios, each with a fixed probability. The scenario probabilities are:
0.01, 0.04, 0.15, 0.02, 0.34, 0.14, 0.09, 0.1, 0.06, 0.05. The process terminates
when maxIter1 iterations have been performed or when maxIter2 consecutive
iterations have been performed without improving the best solution found dur-
ing the search. The parameters of the algorithm were set as described in Table 1.
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(n, p) T δ α λ ψ θmin θmax ǫ r r∗ k1 k2 maxIter1 maxIter2

(100,6) 200 0.5 0.4 0.7 2 5 10 0.003 10 3 2 2 1000 250
(500,10) 150 0.5 0.4 0.7 2 5 10 0.003 10 3 4 4 1000 250

Table 1. Algorithm parameters.

4.1 Strategic oscillation efficiency

The improvement produced when the strategic oscillation is incorporated into
the local search is first addressed. To this aim, both penalty coefficients β1 and
β2 in the merit function (Equation (7)) are fixed to a value ϕ (1,10,100) and
solutions obtained (NSO solutions) are compared with those generated when
the penalty coefficients are self-autoadjusted (SO solutions).

Instance SO NSO RD(%)
ϕ = 1 ϕ = 10 ϕ = 100 ϕ = 1 ϕ = 10 ϕ = 100

1 24.3234 - 25.2348 24.9342 - 3.7470 2.5112
2 22.0237 - 23.149 25.2034 - 5.1095 14.4376
3 24.9014 - 26.7921 28.2347 - 7.5927 13.3860
4 25.6236 26.8923 29.1356 26.1073 4.9512 13.7061 1.8877
5 23.1421 - 24.2997 24.7231 - 5.0021 6.8317
6 24.3513 - 24.9762 27.1892 - 2.5662 11.6540
7 27.6923 - 27.6923 27.9217 - 0.0000 0.8284
8 20.2892 - 22.2349 22.8592 - 9.5898 12.6668
9 24.168 27.02334 23.9152 23.7462 11.8145 -1.0460 -1.7453
10 24.2107 - 25.8551 24.5266 - 6.7920 1.3048

Table 2. Performance of strategic oscillation for 100-node instances.

Instance SO NSO RD(%)
ϕ = 10 ϕ = 100 ϕ = 10 ϕ = 100

1 17.4282 19.3927 20.2254 11.2720 16.0499
2 15.3521 17.2589 17.8924 12.4205 16.5469
3 18.9346 23.0282 24.4627 21.6197 29.1958
4 17.5503 20.4339 19.2389 16.4305 9.6215
5 19.8923 21.9934 23.4602 10.5624 17.9361
6 18.0034 21.3467 21.5469 18.5704 19.6824
7 17.3943 19.3992 20.0429 11.5262 15.2268
8 17.7723 20.389 19.4533 14.7235 9.4585
9 16.5814 19.5496 19.2369 17.9008 16.0149
10 20.4502 24.2421 25.9085 18.5421 26.6907

Table 3. Performance of strategic oscillation for 500-node instances.

Results of the empirical comparison for 100 nodes are summarized in Table 2.
Columns 2 to 5 show the objective function value of solutions obtained from SO
and NSO strategies. A relative deviation (RD) between SO and NSO solutions
is computed as 100× [(sol(NSO)− sol(SO))/sol(SO)]. As it can be noticed, in
90% of the instances the quality of the SO solutions is better than NSO solu-
tions for ϕ = 10 and 100 with average relative improvement of 5.30% and 6.37%
respectively. For the smallest penalty coefficient value (ϕ = 1) no feasible so-
lutions were identified in 80% of the instances. This superiority in the quality
of the solutions generated by using strategic oscillation is better apreciated in
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Table 3 for 500-node instances where the relative average RD are 15.35% and
17.64% for ϕ = 10 and ϕ = 100 respectively.

4.2 Evaluation of the neighborhood exploration strategy

The efficiency of using a dynamic neighborhood structure that variates depend-
ing on the level of relative infeasibility at each iteration is tested. As in the
previous experiment, solutions obtained by using a dynamic neighborhood ex-
ploration strategy (DN) are compared with those obtained when the proposed TS
procedure uses an static neighborhood (SN). Then, neighborhood NA(X) is con-
sidered for the first 500 iterations, after that the neighborhood NA(X)∪NA(X)
is used. Computational results presented in Table 4 confirm the solution quality
improvement when the neighborhood structure is chosen by using a threshold ǫ
for the relative infeasibility. The relative deviations (computed as in the previous
test) between both DN and SN solutions are on average 1.76% and 15.32% for
100 and 500 node instances, respectively, which is a remarkably high improve-
ment particulary in the case of 500-node instances.

Instance (n, p)=(100,6) (n, p)=(500,10)
SN DN RD(%) SN DN RD(%)

1 24.3234 24.7821 -1.8509 19.4356 17.4282 11.5181
2 22.0237 20.9237 5.2572 17.1267 15.3521 11.5593
3 24.9014 25.6221 -2.8128 20.1514 18.9346 6.4263
4 25.6236 25.6082 0.0601 20.6567 17.5503 17.7
5 23.1421 22.0732 4.8425 23.0561 19.8923 15.9046
6 24.3513 23.1892 5.0114 22.3783 18.0034 24.3004
7 27.6923 26.6351 3.9692 22.7923 17.3943 31.0332
8 21.6371 22.3146 -3.0361 19.0342 17.7723 7.1004
9 24.168 23.8375 1.3865 18.5168 16.5814 11.6721
10 24.2107 23.1003 4.8069 23.7197 20.4502 15.9876

Table 4. Comparison between static and dynamic neighborhood exploration strategies.

5 Conclusions and work in progress

In this paper, we introduced the stochastic version of a commercial territory
design problem. A tabu search algorithm is presented for this problem. To the
best of our knowledge the demand uncertainty has not been treated before in
commercial territory design. The proposed TS procedure incoporates sophisti-
cated mechanisms such as strategic oscillation, which constitute the core of many
adaptive memory programming algorithms, and strategies for neighborhood ex-
ploration. Preliminary experimental results show the positive impact of these
mechanisms as the quality of the solutions is significantly improved when these
mechanisms are incorporated into the local search phase.

Several issues are still work in progress. Currently we are working on the
calibration of parameters, we are studying the self-tuning of the algorithm pa-
rameters during the search according to evolution status. We plan to execute a
more extensive experimentation considering instances of 1,000 BUs and up as
well as increasing the number of demand scenarios. The study of the behavior of
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the other components of the local search such as the tabu tenure which can be
adjusted during the search according to the search history is to be done. The in-
corporation of long-term memory strategies to guide the search into unexplored
regions of the solution space (diversification) and performing a more thorough
examination in some good or promising regions (intensification) may be needed
as well.
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