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Abstract

The problem of district design for the implementation of arc routing activities is addressed. The aim is to
partition a road network into a given number of sectors to facilitate the organization of the operations to
be implemented within the region. This problem arises in numerous applications such as postal delivery,
meter readings, winter gritting, road maintenance, and municipal solid waste collection. An integer linear
programming model is proposed where a novel set of node parity constraints to favor Eulerian districts is
introduced. Series of instances were solved to assess the impact of these parity constraints on the objective
function and deadhead distance. Networks with up to 401 nodes and 764 edges were successfully solved. The
model is useful at a tactical level as it can be used to promote workload balance, compactness, deadhead
distance reduction and parity in districts.

Keywords: combinatorial optimization; districting; integer linear programming; arc services

1. Introduction

The problem of district design for the implementation of arc routing activities is addressed. The aim
is to partition a road network into a given number of sectors to facilitate the organization of the
operations to be implemented within the region. This problem arises in numerous applications such
as postal delivery, meter readings, winter gritting, road maintenance, and municipal solid waste
collection. A proper districting plan that divides the entire area into several balanced subregions
promotes competition among contractors for arc routing services. Allowing more contractors to bid
can reduce the investment risk and make it more attractive for companies to bid as well as prevent
the domination of the service by one large company (Lin and Kao, 2008).
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Districting decisions are made at a strategic or tactical management level, routing decisions are
operational and made on a regular basis (Haugland et al., 2007). The subset of edges assigned
to a depot constitutes a district. In contrast to the clear objectives in pure location or routing
problems, it appears to be more difficult to define exact criteria for designing good districts for arc
routing (Muyldermans et al., 2002).

A general model is proposed where the focus is on the districting decisions such that the tactical
or planning-level decisions are not mixed with the operational decisions. Instead, we use criteria that
should lead to the formation of good routing. Typical criteria for districting are (a) contiguity, (b)
compactness, (c) deadhead distance, and (d) work balance. A district is contiguous, if it is possible
to travel between any two points within the district without having to leave the district. A district
is said to be compact, if it is nearly round shaped or square, nondistorded, without holes, and
has a smooth boundary (Butsch et al., 2014). Concentrating service activity in compact districts
means shorter travel distances. Compactness is an intuitive measure for which several measures have
been proposed in the districting literature (Horn et al., 1993) but none of these is comprehensive.
Deadhead refers to the traveled distance where no service is to be performed. Workload balance
refers to the degree in which every district is required to perform the same amount of work.

Compactness and contiguity lead to more efficient routing of vehicles (Perrier et al., 2006a);
however, the literature that takes deadhead into account at a strategic level is scarce. Deadhead
distance is very hard to model at a strategic level because routing has to be done in order to take it
into consideration. The model proposed in this paper takes deadhead into account at the strategic
level by introducing the parity constraints.

Most of the work done in territory design/districting problems such as political districting, sales
territory alignment, commercial territory design, health care districting, school district design, and
emergency services are node-based partitioning models, that is, the interest is on creating districts
that are a partition of the set of vertices because the service is given at the nodes. In comparison with
node-based districting, the problem of districting in connection with vehicle routing for collection
or distribution services has received very little attention (Perrier et al., 2006b). It should be noted
that node- and edge-based districting models have different mathematical structure and therefore
algorithms and methods developed for node-based districting models are not quite applicable to
edge-based models. For excellent surveys on node-based districting the reader is referred to the
works of Kalcsics et al. (2005), Zoltners and Sinha (2005), Duque et al. (2007), and Ricca et al.
(2013). Here, we highlight the most relevant work on edge/arc-based districting models.

Bodin and Levy (1991) introduce the Arc Partitioning Problem, where arcs in a connected network
are broken into a set of approximately equally weighted partitions, which is implemented in postal
delivery. Campbell and Langevin (1995a, 1995b) develop sectorization models for snow removal
and disposal. In Campbell and Langevin (1995b), they introduce the model of assigning sectors
to disposal sites. They develop a simple two-phase heuristic that is applied to a real-world case in
Montreal. Then, in Campbell and Langevin (1995a), they extend their model to allow for disposal
site location decisions as well. No solution method is given in this follow-up work. We must point
out that in both of these works, no districting decisions are made, that is, the sectors are already
fixed. Later, Perrier et al. (2008) present a model and two heuristic solution approaches based
on mathematical optimization for the problem of partitioning a road network into sectors and
allocating sectors to snow disposal sites for snow disposal operations. Given a road network and a
set of planned disposal sites, the problem is to determine a set of nonoverlapping subnetworks, called

C© 2015 The Authors.
International Transactions in Operational Research C© 2015 International Federation of Operational Research Societies



G. Garcı́a-Ayala et al. / Intl. Trans. in Op. Res. 23 (2016) 433–458 435

sectors, according to several criteria related to the operational effectiveness and the geographical
layout, and to assign each sector to a single snow disposal site so as to respect the capacities of the
disposal sites, while minimizing relevant variable and fixed costs. Their approach uses single street
segments as the units of analysis and they consider sector contiguity, sector balance and sector shape
constraints, hourly and annual disposal site capacities, as well as single assignment requirements.
The resulting model is based on a multicommodity network flow structure to impose the contiguity
constraints in a linear form. The two solution approaches were tested on data from the city of
Montreal in Canada. Muyldermans et al. (2002, 2003) present a different approach for tackling arc
districting problems. First in Muyldermans et al. (2002), they address an arc districting problem for
salt spreading operations. They present an ILP model that considers the following planning criteria:
ability to support good routing, balance in workload, compactness of the districts, and centrality
of the depot. They present a heuristic procedure for the districting problem and its application to a
real-world network in Antwerp. In their follow-up work (Muyldermans et al., 2003), they present
a framework for general arc districting problems considering contiguity as well. They also analyze
cases where different objectives, such as minimizing number of vehicles, may be preferred. The
heart of their approach is the transformation of the given road graph into an Eulerian graph and
then using elementary cycles as the main basic units. From this, the proposed heuristic seeks to
form the cycles simultaneously by aggregating basic units to each district. Mourão et al. (2009)
address the sectoring arc routing problem, which consists of both deciding the arc partition and the
vehicle routing in each district. It is a combination of two families of classical problems: sectoring
problems and arc routing problems. Contiguity is not required in this work. The districts are built
by optimizing routing costs. No compactness measure is considered in the model. A two-phase
heuristic is proposed. A pre-assignment of edges to depots is made at a first phase, and revised at
a second phase along with vehicle routing. More recently, Butsch et al. (2014) propose a heuristic
for districting problems arising in an arc routing context. The aim is to find arc partitions that
satisfy two hard criteria: complete and exclusive assignment as well as contiguity; and several soft
criteria: balance, small deadheading, local compactness, and global compactness. To achieve this
they use a weighted objective function containing the four soft criteria. The proposed heuristic
applies a construction procedure followed by a tabu search improvement phase in which several
subroutines are defined and selected according to a roulette wheel mechanism, as in adaptive large
neighborhood search. Extensive tests conducted on instances derived from real-world street data
confirm the efficiency of the proposed methodology. Silva de Assis et al. (2014) address an edge
redistricting problem arising in meter reading in power distribution networks. They transformed
their edge districting problem into a node-districting problem and propose a GRASP metaheuristic.
In their approach, they consider balancing and connectivity constraints and similarity with the
existing districts.

As can be seen from the literature, previous works are either application specific or do not take
into account all criteria (a) through (d), except for the work of Butsch et al. (2014) who consider
these criteria from a heuristic perspective. The aim of the present work is (i) to propose a new general
model that includes all four criteria and introduces a new criterion as well: parity, and (ii) to derive
an exact algorithm for solving the problem.

Parity is not a novel concept, and it has been known to affect routing decisions ever since the
time of Euler. However, no models were found that take it into account when districting for routing
services takes place. When the routing design is to take place, a Chinese Postman Tour has to be
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Fig. 1. Possible partitions for a node of degree 3.

found over the arcs in each partition. Thus each subgraph in the partition is desired to be as close
to an Eulerian graph as possible. The necessary and sufficient condition for an Euler cycle to exist is
that every node be of even degree. Parity is then defined as the criterion that penalizes arc partitions
that induce odd degree of nodes in each subgraph of the partition. Adding such a criterion to the
arc districting model will lead to partitions that are closer to an Eulerian graph, which will, in turn,
allow for more efficient vehicle routing by reducing deadhead.

To illustrate this, suppose that the nodes in Fig. 1 are part of a network to be partitioned into
three districts. There are three arcs to be assigned. Note that since node b has odd degree in the
original graph, there is no possible partition that will allow it to have even degree in every district.
However, a constraint that favors the imparity to be maintained in only one of the districts, resulting
in a favorable partition, can be built. An unfavorable partition would be a partition that assigns one
edge to each district making then node b to be of odd degree in each of the districts.

In a similar manner, if a node has even degree in the original graph, a partition where it keeps
its even degree among the districts should be preferred over partitions where it does not. Assume
nodes in Fig. 2 are part of a network to be partitioned into three districts. Cases of partitions where
node c maintains the even degree are shown. These cases are considered favorable over partitions
where node c has odd degree in two of the three districts.

This criterion is novel and to the best of our knowledge has not been seen in any of the reviewed
literature at the district design level. Odd degree nodes in a partition translate into deadhead time.
A service vehicle will have to travel one edge of an odd degree node twice: once where the service
will be delivered, and once without service in order to get back to the next edges. In this paper, we
propose this new parity criterion and a general model for arc districting which considers all typical
criteria (a) through (d).

The remainder of the paper is organized as follows. Section 2 states the addressed problem
and describes the proposed integer linear programming model. Section 3 describes the proposed
algorithm for solving the problem. In order to assess the effect of the different criteria in our model
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and their impact on the solutions, a series of instances has been generated and solved. In Section
4, we describe this process and the obtained results. Furthermore, we illustrate the step-by-step
performance of the solution algorithm with one of the considered benchmark instances. Finally,
Section 5 offers concluding remarks.

2. Problem statement and model

An integer linear programming (ILP) model is proposed where the objective function to be min-
imized is a dispersion measure, consisting of the sum of the distances to and from each edge to
its assigned depot. This objective is equivalent to maximizing compactness. Workload balance is
modeled by setting upper and lower limits on the expected average total workload per district.
Contiguity is obtained by assuring a path of allocated edges to a depot exists if an edge is to be
assigned. Parity is enhanced by setting an upper limit on the total number of new odd degree nodes
in each district allowed in the partition.

The underlying road network is modeled by an undirected planar graph G = (V, E ), where each
edge of this graph corresponds to a road or street of the underlying road network. The node
set V corresponds to street crossings or dead ends. We assumed G to be connected. Every edge
e = (i, j) ∈ E has a length, le, and a demand, de, which is assumed to be proportional to its length.
Let P ⊂ V denote a given subset of k depots. For simplicity, and without loss of generality, it is
assumed that the k depots are labeled as nodes 1, 2, . . . , k. Therefore, in the following the district
associated with depot p ∈ P is referred to as district p. The problem is then defined as finding a
valid k-partition of edges E = (E1, . . . , Ek) such that for each p ∈ P the district Gp = (V (Ep), Ep)

meets some required planning criteria. Here V (Ep) represents the set of nodes that are incident to
at least one edge of Ep.
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Let σ (e) denote the set of edges adjacent to edge e ∈ E, and δ(i) the set of edges incident to node
i ∈ V . For any subset S ⊂ E , σ (S) is the cut set of S, that is, the set of edges with one end point in
V (S), the set of nodes associated to edges in S, and the other end point in V \ V (S).

The following parameters are known: bpe, minimum distance from depot p ∈ P to edge e =
(i, j) ∈ E , defined as min{ fpi, fp j}, where fi j is the shortest-path distance in G between nodes
i, j ∈ V relative to the length vector l ; D̄ = ∑

e∈E de/|P|, average demand per district; τ1 ∈ (0, 1),
tolerance for demand balance constraints; τ2 ∈ (0, 1), tolerance for parity constraints; and M, a
sufficiently large number.

The following integer decision variables are defined:

xpe, binary variable equal to 1 if edge e ∈ E is assigned to depot p ∈ P and 0 otherwise;

wpi, binary variable equal to 1 if node i ∈ V is incident to an edge assigned to depot p ∈ P and 0
otherwise.

In addition, to model the parity of the vertices we use the following sets of variables: z0
ip, binary

variable equal to 1 if degree of node i ∈ V in district p ∈ P is odd and 0 otherwise; the auxiliary
variables zip, which relate z0

ip to the degree of node i, i ∈ V , p ∈ P; and ri, binary variable equal to
1 if node i “loses” parity and 0 otherwise. Let V e ⊂ V be the set of even degree nodes in G(V, E ).
A node i ∈ V e is said “to lose parity” if there is at least one district involving i where the degree of
node i in that district is odd. In other words, node i is said to keep its parity if the degree of i in
each of its associated districts is even. In a similar fashion, let V o be the set of odd degree nodes in
G(V, E ). A node i ∈ V e is said “to lose parity” if there are at least two districts involving i where
the degree of node i in those districts is odd. In other words, node i is said to keep its parity, if the
degree of i in each but one of its associated districts is even. Then, the proposed ILP is as follows:

Min g(x) =
∑

p∈P

∑

e∈E

bpexpe (1)

subject to
∑

p∈P

xpe = 1 e ∈ E (2)

∑

s∈σ (S)

xps −
∑

s∈S

xps ≥ xpe − |S| p ∈ P, e ∈ E, S ⊂ E \ σ (e) (3)

∑

e∈E

dexpe ≤ D̄(1 + τ1) p ∈ P (4)

∑

e∈E

dexpe ≥ D̄(1 − τ1) p ∈ P (5)

∑

e∈δ(i)

xpe ≤ Mwpi p ∈ P, i ∈ V (6)

wpi ≤
∑

e∈δ(i)

xpe p ∈ P, i ∈ V (7)
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∑

e∈δ(i)

xpe = 2zip + z0
ip p ∈ P, i ∈ V (8)

ri ≤
∑

p∈P

z0
ip i ∈ V e (9)

|P|ri ≥
∑

p∈P

z0
ip i ∈ V e (10)

ri ≤
∑

p∈P

z0
ip − 1 i ∈ V o (11)

|P|ri ≥
∑

p∈P

z0
ip − 1 i ∈ V o (12)

1
|V |

∑

i∈V

ri ≤ τ2 (13)

wpi, xpe, z0
ip, ri ∈ {0, 1} p ∈ P, i, j ∈ V, e ∈ E (14)

zip ∈ N ∪ {0} p ∈ P, i ∈ V . (15)

The objective function (1) manages the compactness of the district by measuring dispersion as
the sum of distances to and from each edge to its allocated depot. It can be seen as a p-median
type of function with the particularity that in our case the location of each depot is given and
not part of the decision process. Constraints (2) force each edge to be assigned to exactly one
depot. Constraints (3) ensure district connectivity. These constraints, analogous to the connectivity
constraints used in Rı́os-Mercado and Fernández (2009) for node territory design, can be explained
as follows. Let S ⊂ E \ σ (e) be a subset whose edges are not adjacent to edge e in district p. If
edge e is not assigned to p (xpe = 0), the constraint becomes redundant. Furthermore, if there is
at least one edge s ∈ S that is not assigned to district p, then the second term of the left-hand side
becomes strictly less than |S| and the constraint becomes redundant too. Hence, constraints (3)
become nonredundant only when all edges in S are assigned to district p. Then, the first term of
the left-hand side must be greater than or equal to 1. That is, at least one edge in the cut set of set S
must be assigned to district p as well. Applying the same rationale recursively to set S ∪ {s} results
eventually in a territory connected to edge e in district p. Note that there is an exponential number of
such constraints. Constraints (4) and (5) give rise to balanced districts within the allowed tolerance
τ1 ∈ (0, 1). Constraints (6)–(7) identify nodes involved in each district p, where M is a sufficiently
large number. Typically M is given the value of largest node degree in the graph. In essence, they
ensure that an edge is assigned to a depot if and only of its two incident nodes are assigned to the
same depot, including depots. These constraints along with the connectivity constraints (3) imply
that a depot p belongs to district p; however, if this condition were to be relaxed the term i ∈ V
would have to be replaced by i ∈ V \ P in constraints (6)–(7). Constraints (8) set the degree of node
i in district p, and assign an appropriate value to z0

ip in order to identify nodes of odd degree as well.
Constraints (9)–(13), used to limit the imparity gain, deserve further explanation. First, for each
node i of even degree in G = (V, E ), we can see that ri = 0 if and only if

∑
p∈P z0

ip = 0, that is, in each
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district involving node i its degree must be even for the node to be considered as keeping its parity
(ri = 0). This is achieved by constraints (9)–(10). Similarly, constraints (11)–(12) set the relationship
for the imparity gain for each odd degree node. Finally, the percentage of nodes with lost imparity,
given by

∑
i∈V ri, is limited by parameter τ2 ∈ (0, 1), in constraint (13). Finally, constraints (14) and

(15) set the nature of the decision variables.
Note that constraints (9)–(13) are valid in any type of graph regardless its distribution of even

and odd degree nodes; however, if the number of odd degree nodes in G = (V, E ) is relatively large,
constraints (9)–(13) may be replaced by (16)–(17):

∑

i∈V

∑

p∈P

z0
ip − l = l0 (16)

l ≤ τ2(l0 + l ), (17)

where l is an integer variable that accounts for the imparity gain with the induced partition and
parameter l0 is the number of odd degree vertices in G. These new parity constraints reduce the
number of binary variables in the model since the ri variables are no longer needed. Computational
experiments are done with both sets of parity constraints.

3. Solution algorithm

The main difficulty for solving the proposed ILP arises from the exponential number of connectivity
constraints; their explicit enumeration is practically impossible. Salazar-Aguilar et al. (2011) deal
with a similar issue but in the context of node-based territory design. To address this, they propose a
solution algorithm that iteratively employs branch and bound and cut generation. In our work, we
implement a similar idea to deal with the exponential number of connectivity constraints. To face this
issue with the connectivity constraints, a solution algorithm as in Algorithm 1 in Salazar-Aguilar
et al. (2011) is implemented.

The idea is fairly simple. In our implementation, a relaxed ILP model, which does not include the
connectivity constraints (3), is solved by branch and bound. The obtained solution is checked for
disconnected districts. If disconnected districts are found, cuts are generated for violated connectivity
constraints and added to the relaxed model. The relaxed model with such cuts is solved again and
this is repeated until a solution with no violations is reported.

An alternative to this approach would be to replace the exponential number of connectivity
constraints by a polynomial number of flow-based connectivity constraints (Gouveia et al., 2010).
However, for node districting problems, this approach has shown very little value as the size of
the problem becomes very large. In addition, due to the structure of our problem, for practically
all instances tested, the proposed algorithm converges in a single iteration. It was observed that
solutions with disconnected districts were obtained on instances where the all or most of the depots
are extremely close to each other. In districting applications (e.g., snow removal and disposal [Labelle
et al., 2002], salt spreading operations [Muyldermans et al., 2002]) it is not typical to find situations
where all or most of the depots or facilities are close to each other. In fact, in practically all of the
districting literature where the locations of the depots or facilities are part of the decision process,
a compactness criterion, which makes the location of centers be dispersed, is considered.
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Solution Algorithm 1

Step 1. Solve the ILP given by (1)–(15), with the connectivity constraints (3) relaxed.
Step 2. Identify if there are any disconnected districts, which would mean violated connectivity

constraints are present. This reduces to identifying the connected components induced
by the solution associated with each district. It is well known that finding the connected
components in every district can be efficiently done in polynomial time by breadth first
search (BFS).

Step 3. If violated constraints are found, generate the associated cuts, add them to the relaxed
model and return to Step 1.

Step 4. If no constraints are violated, stop and return optimal solution.

The convergence of the algorithm is guaranteed due to two facts. First, the BFS algorithm returns
either a set of violated connectivity constraints, in the form of unconnected subsets or an empty
set. Second, there is a finite number of connectivity constraints. Thus the algorithm is guaranteed
to stop at an optimal solution for the original model. The number of iterations the algorithm needs
in practice to find an optimal solution is an issue to be investigated through experimental work.

4. Computational experiments

The proposed model and solution algorithm was implemented within the GAMS framework (ver-
sion 24.7) and solved using CPLEX 12.6 in an HP ProBook 6460b, Intel Core i5-2410M and CPU
2.3 GHz. For our experiments, we used 15 road networks from Belenguer et al. (2006). The authors
classified their road networks in three groups, namely, LPR-A, LPR-B, and LPR-C. We took five in-
stances from each group (labeled LPR-A-01 to LPR-A-05, and so on). The size of the road network
is the main difference among them. Now, since these instances that represent the road networks are
used by the authors for addressing mixed capacity arc routing problems, we have modified them
to fit in our problem as follows. That database consists of mixed directed graphs with demand and
service and transit costs associated to arcs. We take the same road topology ignoring the arc direc-
tion to form an undirected graph. We use the distance between nodes as edge length. In addition,
since we have depots as part of the problem parameters, we have extended this database of instances
by duplicating some of these instances with different number of depots. In total, we have 20 base
instances. Table 1 shows the properties and size of each of the instances in the database, where each
row displays the instance name, number of nodes, number of edges, and number of integer variables
(NIV) in the model.

Now, from these base datasets, we have run many experiments varying some parameters such
as the value of balance tolerance and imparity tolerance to address the important issues. Road
networks with up to 401 nodes, 764 edges and six depots, resulting in 12,203 discrete variables were
solved successfully.

Each instance of the extended dataset and corresponding experiment is identified by the following
notation. Instance LPR-A-01-2-10-05, for example, refers to network LPR-A-01 from Belenguer
et al. (2006), where the suffix “-2-10-05” means p = 2, and run under τ1 = 0.10 and τ2 = 0.05. The
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Table 1
Data instances

Instance |V | |E | NIV

LPR-A-01-2-* 28 52 300
LPR-A-01-3-* 28 52 436
LPR-A-02-2-* 53 92 553
LPR-A-03-2-* 146 252 1526
LPR-A-03-3-* 146 252 2216
LPR-A-03-4-* 146 252 2906
LPR-A-03-5-* 146 252 3596
LPR-A-04-4-* 195 339 3891
LPR-A-05-4-* 321 559 6409

LPR-B-01-2-* 28 47 290
LPR-B-01-3-* 28 47 421
LPR-B-02-2-* 53 90 551
LPR-B-03-4-* 163 292 3287
LPR-B-04-4-* 248 465 6293
LPR-B-05-6-* 401 764 12,203

LPR-C-01-3-* 28 47 421
LPR-C-02-3-* 53 91 803
LPR-C-03-4-* 163 308 3351
LPR-C-04-3-* 277 514 4312
LPR-C-05-4-* 369 693 7569

computation time limit was set to 60,000 seconds. When the algorithm stops due to this limit, the
best feasible solution is shown. The relative optimality gap in the solver is set to 0.001%.

In total, when considering all different parameter variations a total of 89 different runs on these
20 instances were attempted and successfully solved. Individual results for each run are displayed in
the Appendix. An important observation is that 86 of these 89 runs needed just a single iteration to
converge. This means the optimal or feasible solution found in the relaxed model has no disconnected
components and therefore is optimal or feasible to the original model. This happens because the
depots are somewhat dispersed throughout the road network, and the dispersion minimization in
the objective function favors connectivity around the depots. The three instances that needed more
than a single iteration were built with the aim of getting disconnected districts in order to show the
solution algorithm at work.

Now, among all these different runs we choose arbitrarily a subset with different values of p, τ1,
and τ2, trying to cover many different combinations to test the model containing the alternative
parity constraints. Optimal solutions were obtained to 50 of 53 tested runs. The detailed results for
each run are shown in the Appendix. Here we summarize the most relevant results.

4.1. Effect of the parity constraints

In order to get a good estimation about the benefit of introducing the parity constraints in the
model, a Chinese Postman Problem (CPP) was solved for each district once an optimal solution is
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Table 2
Effect of parity constraints in deadhead distances

Instance τ2 = 1.0 0.10 0.04 0.03 0.02 0.01 RI (%)

LPR-A-03-3-* 7222.31 7222.31 6393.14 6393.14 6393.14 6143.33 14.9
LPR-A-04-4-* 9560.46 9560.46 9640.95 9199.70 8978.24 8584.50 10.2
LPR-A-05-4-* 15,261.36 15,261.36 15,073.37 14,872.61 14,751.84 14,255.61 6.6
LPR-B-01-2-* 1416.61 1416.61 1416.61 1259.78 1259.78 1259.78 11.1
LPR-B-03-4-* 8297.09 8297.09 8186.11 8143.17 8253.71 7895.36 4.8
LPR-B-04-4-* 10,120.24 10,120.24 9733.93 9123.67 8622.09 8282.4 18.2
LPR-B-05-6-* 16,270.15 16,270.15 16,281.55 16,281.55 15,629.88 15,005.6 7.8
LPR-C-01-3-* 1966.98 1528.21 2090.34 1681.27 1681.27 1681.27 14.5
LPR-C-02-3-* 4523.47 4461.14 3956.02 3838.51 3838.51 3407.74 24.7
LPR-C-03-4-* 8354.04 8354.04 8282.36 8089.14 8023.91 7419.36 11.2
LPR-C-04-3-* 11,323.84 11,323.84 11,437.87 10,996.33 10,497.89 10,670.64 5.8
LPR-C-05-4-* 15,655.47 15,655.47 15,655.47 15,830.33 15,073.15 15,044.66 3.9
Average RI (%) 1.97 1.92 6.26 7.99 11.13

found. This is done to get a measure of the deadhead a single vehicle would have to travel in each
district. Our hypothesis is that introducing the parity constraints will lead to better districts for
routing vehicles. This happens because there would be less deadhead compared to a model that does
not include them and was proven to be true throughout all solved instances. Table 2 displays the
results when solving a few instances with different values of τ2, the parity tolerance parameter. Each
row shows the instance name and the values of the corresponding deadhead when solving a CPP
for each district as a function of τ2. Note that the τ2 = 1.0 column represents the situation when no
parity constraints are present. The last column is relative improvement of the model when τ2 = 0.01
with respect to no use of the parity constraints (τ2 = 1.0). The last row shows the average relative
improvements with respect to column (τ2 = 1.0) over all instances. For example, the value of 7.99
in the last row indicates the average relative improvement of the deadhead when obtained under
τ2 = 1.0 with respect to the absence of these constraints (τ2 = 1.0). As we can see, the introduction of
the parity constraint yields lower values of nodes with lost parity, which, in turn, causes a reduction
in the total deadhead distance. The relative improvement shows values 3.9–24.7% when compared
to the model where these constraints are absent. The average total improvement over all instances
is 11.13%. This is indeed a positive impact.

Of course, tightening the value of τ2 must also have a negative effect in the objective function.
Table 3 displays similar results as the previous table showing the value of the objective function for
the same set of instances. The last column shows the relative increment of the objective function
when τ2 = 0.01 is in effect with respect to no use of the parity constraints (τ2 = 1.0). As we can
see, the detriment of the objective function is very marginal for practically all instances. The worst
case was instance LPR-C-01-02 that observed a 3.18% increase. The average over all instances was
0.56%.

Let us now see some graphical results. Consider the two results for example LPR-A-03 in Fig. 3.
This is a graph with 146 nodes, 252 edges, three depots whose corresponding model has 2216 discrete
variables. The motivation for these instances is to show how the parity restriction works and affects
the optimal solution in a graphical way.
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Table 3
Effect of parity constraints in objective function values

Instance τ2 = 1.0 0.10 0.04 0.03 0.02 0.01 RI (%)

LPR-A-03-3-* 277,194.12 277,194.12 277,741.11 277,741.11 277,741.11 278,068.71 0.31
LPR-A-04-4-* 291,013.88 291,013.88 291,132.37 291,255.70 291,484.67 291,746.50 0.25
LPR-A-05-4-* 710,050.53 710,050.53 710,116.40 710,218.53 710,478.15 710,921.49 0.12
LPR-B-01-2-* 28,318.27 28,318.27 28,318.27 28,527.56 28,527.56 28,527.56 0.73
LPR-B-03-4-* 249,074.20 249,074.20 249,090.10 249,119.28 249,150.66 249,227.11 0.06
LPR-B-04-4-* 380,014.97 380,014.97 380,076.63 380,221.68 380,536.59 380,785.88 0.20
LPR-B-05-6-* 711,108.32 711,108.32 711,122.88 711,122.88 711,699.23 711,990.07 0.12
LPR-C-01-3-* 17,325.62 17,501.45 17,635.76 17,894.65 17,894.65 17,894.65 3.18
LPR-C-02-3-* 58,836.93 58,847.73 59,021.54 59,267.68 59,267.68 59,583.99 1.25
LPR-C-03-4-* 263,035.30 263,035.30 263,171.69 263,321.96 263,404.52 263,760.40 0.27
LPR-C-04-3-* 943,293.89 943,293.89 943,318.28 943,425.82 943,619.75 944,016.38 0.08
LPR-C-05-4-* 853,979.50 853,979.50 853,979.50 854,018.26 854,197.80 854,623.55 0.08

Fig. 3. Effect of parity tolerance on instances LPR-A-03-3-20.
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Fig. 4. Effect of balance constraints.

The network in Fig. 3(a) used τ2 = 0.20, which is equivalent, in this particular case, to relaxing the
parity constraints. The network in Fig. 3(b) used τ2 = 0.05. After solving each instance, the network
on Fig. 3(a) has

∑
i∈V ri = 10, which means 10 nodes lost parity, that is, either they had even degree

in the original graph and now have odd degree, or they were of odd degree in the original graph
and are of odd degree in more than one district due to the partition now. Such nodes are encircled
in the figure. Its corresponding deadhead distance is 7222.31. In contrast, the solution on Fig. 3(b)
has only two nodes that lost parity. Its corresponding deadhead distance is 6393.14. This represents
a 11.4% improvement. This is exactly what the model is trying to convey.

Care must be taken when setting the values of τ1 and τ2 since they are related to each other and
wrong combinations of the pair will lead to empty feasible regions. The parity tolerance τ2 has a
lower bound threshold value determined by the balance tolerance; beneath this value the problem
becomes infeasible. If the balance tolerance is completely relaxed (τ1=1), parity tolerance τ2 can
be as low as zero. This means that if no better partition was found, all arcs could be assigned to
a single district where no imparity would be gained. The balance tolerance, τ1, on the other side,
has a lower bound threshold value that depends not only on the imparity tolerance but also on
specific characteristics of each instance such as the number of districts, the number of edges, and
the demand for each edge.

4.2. Effect of balance constraints

The effect of moving the balance tolerance is now studied. Figure 4 shows results for network LPR-
B-02-2 with 10 different values of τ1. The balance constraint parameter varies from high (left-most)
to low (right-most) in the figure. Parameter τ1 starts at a value of 20%, which is equivalent to having
the balance constraints relaxed, and decreases to the value of zero. Not all instances allow having
zero-tolerance balance, in fact most would be infeasible, but this example can produce perfectly
balanced districts.
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Fig. 5. Computation times and model size for instance LPR-A-03.

The objective function increases as the value of τ1 is tightened as expected, but no correlation
was found in solution time. As far as imparity is concerned, an increase, although not monotone,
was observed.

4.3. Effect of number and location of depots

We now investigate the effect of the number and location of depots on the computational effort.
To examine this effect a collection of different instances was created from network LPR-A-03. This
network has 146 nodes and 252 edges. Instance LPR-A-03-2, has two depots, instance LPR-A-
03-3, has three depots. Instances LPR-A-03-4, LPR-A-03-4a, LPR-A-03-4b, LPR-A-03-4c, and
LPR-A-03-4d all have four differently located depots. Finally instance LPR-A-03-5 has five depots.

Figure 5 plots the CPU time employed versus the number of discrete variables in every instance.
It can be seen how for a specific network the number of binary variables increases linearly with the
number of depots, and this is related to the time required to solve if a solution is reached in one
iteration. This suggests that the position of the depots is of great importance as it directly affects
computation time. It was observed that instances where the depots are more dispersed tend to be
solved in a single iteration of the algorithm.

In Fig. 5, it can be seen the solution time for instance LPR-A-03-4c is three times larger
than for the rest of the instances with four depots. This is so because the algorithm had to
run three iterations in order to find a connected solution. It is the hardest instance to solve for
LPR-A-03.

Throughout the experimentation, we have focused our work on instances where the depots
are relatively dispersed in the network, which is more representative of real-world instances.
We have seen how, for these type of instances, the solution algorithm converges in a single it-
eration. However, there might be other real-world cases where the depots are not necessarily
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Fig. 6. Results for LPR-A-03.

dispersed. Thus, we are also interested in investigating the performance of the model on these
type of instances.

A series of additional instances was then created in an atypical manner, with all or some of the
depots placed close to each other. This was done in order to force the relaxed model to produce
partitions with disconnected districts, so that the complete algorithm can be shown at work, and
observe the model behavior under these circumstances. Examples LPR-A-03-4c and Example LPR-
A-03-4d are two of such instances.

Partitions for all instances of LPR-A-03 with four depots are seen in Fig. 6. LPR-A-03-4a has
the depots located on the outskirts of the network and LPR-A-03-4b has the depots ending up
at the center of their district. LPR-A-03-4c has three aligned depots neighboring each other and
finally LPR-A-03-4d has two pairs of neighboring depots. Figure 6 shows that having depots in
vicinity make the districts more dispersed. This happens because the model tries to build each
district around the depot, if two depots are close to each other, they compete with each other and
dispersion results.

Note how partition for LPR-A-03-4c is disconnected and therefore is infeasible to the original
model. Although LPR-A-03-4d has neighboring depots also, the optimal solution was found in a
single iteration. For LPR-A-03-4c, cuts were generated and the model was solved again until no
disconnected components were found in the solution. For this particular instance, we illustrate, in
the following subsection, how the algorithm works to find a feasible solution.
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Fig. 7. Iteration 1 for LPR-A-03-4c-10-20.

Fig. 8. Iteration 2 for LPR-A-03-3.

4.4. Illustrative example

We now present an example that illustrates every step of the algorithm. To this end, we use instance
LPR-A-03-4c which has three depots close together to force disconnected districts. Figure 7 presents
the result for the first iteration. To better visualize the algorithmic process, the edge label is displayed
in some edges. The depots are shown in gray diamonds. The solution found in each iteration can be
seen in Figs. 8 and 9, including the optimal solution where the districts are all connected.
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Fig. 9. Iteration 3 for LPR-A-03-3.

Solution Algorithm for instance LPR-A-03-4c-10-20.

1. Solve the model with connectivity constraints (3) relaxed.

(a) Solver solution: 243,972.95
(b) CPU time (seconds): 7.083
(c) The resulting partition is displayed in Fig. 7.

2. Solve the separation problem by identifying districts with disconnected components.

(a) In this example, two districts are disconnected, the two on the right. The lower district
whose corresponding depot is at node 69, and the upper right district that has its depot on
node 70.

3. For each disconnected district, generate the appropriate cuts and add them to the relaxed model.
In the previous step, two disconnected districts were identified with three disconnected segments
each.

(a) The lower district (depot at node 69) has the following disconnected sub-
sets of edges: S1 = {177}, S2 = {227}, and S3 = {242}, with corresponding cut
sets σ (S1) = {150, 175, 176, 221, 223}, σ (S2) = {202, 224, 226, 251, 252}, and σ (S3) =
{229, 231, 243, 244}, respectively. These will generate the following connectivity cuts (3):

x69,150 + x69,175 + x69,176 + x69,221 + x69,223 − x69,177 ≥ 0

x69,202 + x69,224 + x69,226 + x69,251 + x69,252 − x69,227 ≥ 0

x69,229 + x69,231 + x69,243 + x69,244 − x69,242 ≥ 0.
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(b) The upper right district (depot at node 70) has the following disconnected
subsets of edges: S1 = {22}, S2 = {24, 58}, and S3 = {91}, with corresponding
cut sets σ (S1) = {18, 20, 21, 54, 56, 57}, σ (S2) = {20, 23, 26, 56, 59, 60}, and σ (S3) =
{57, 59, 89, 92, 93, 94, 95}, respectively. These will generate the following cuts:

x70,18 + x70,20 + x70,21 + x70,54 + x70,56 + x70,57 − x70,22 ≥ 0

x70,20 + x70,23 + x70,26 + x70,56 + x70,59 + x70,60 − (x70,24 + x70,58) ≥ −1

x70,57 + x70,59 + x70,89 + x70,92 + x70,93 + x70,94 + x70,95 − x70,91 ≥ 0.

4. Iteration 2: Solve the relaxed model with added constraints.

(a) Solver solution: 244,045.07
(b) CPU time (seconds): 12.449
(c) The resulting partition is displayed in Fig. 8.

5. Solve separation problem by identifying districts with disconnected components.
(a) In this iteration, the same districts (associated to depots 69 and 70) are found disconnected.

6. For each disconnected district, generate the appropriate cuts and add them to the relaxed
model.

(a) As can be seen in Fig. 8, district 69 has one disconnected component and district 70 has
two disconnected components.

(b) The lower right district (depot at node 69) has one disconnected component S1 = {227, 251}
with corresponding cut set σ (S1) = {202, 224, 226, 241, 250, 252}. This generates the follow-
ing cut:

x69,202 + x69,224 + x69,226 + x69,241 + x69,250 + x69,252 − (x69,227 + x69,251) ≥ −1

(c) The upper right district (depot at node 70) has two disconnected components S1 = {58}
and S2 = {19, 22, 38, 54}, with corresponding cut sets σ (S1) = {24, 25, 26, 56, 59, 60} and
σ (S2) = {16, 20, 36, 52, 55, 56, 57}, respectively. These generate the following cuts:

x70,24 + x70,25 + x70,26 + x70,56 + x70,59 + x70,60 − x70,58 ≥ −0

x70,16 + x70,20 + x70,36 + x70,52 + x70,55 + x70,56 + x70,57

−(x70,19 + x70,22 + x70,38 + x70,54) ≥ −3

7. Iteration 3: Solve relaxed model with added constraints.

(a) Solver solution: 244,045.07
(b) CPU time (seconds): 12.792

8. Solve separation problem by identifying districts with disconnected components.

(a) No districts are disconnected
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Fig. 10. Comparison between parity constraints.

9. Solution is optimal.

(a) Solver solution: 244,045.07
(b) TOTAL CPU time (seconds): 32.32
(c) Optimal solution partition is displayed in Fig. 9.

4.5. Assessment of alternative parity constraints

Two different sets of parity constraints are proposed for modeling districts for routing services. In
the previous section, the empirical work was based on the model with parity constraints (9)–(13).
As pointed out earlier, these constraints are always valid for any type of graph. However, there is
a class of instances where parity constraints (16)–(17) may be used instead. The advantage is that
constraints (16)–(17) are smaller in size and seem a good option. However, the main disadvantage
is that these may fail when the number of odd degree nodes is relatively low (that is when the graph
tends to be Eulerian).

In most of the cases, solving the model with either set of parity constraints rendered the same op-
timal solution, although instances solved with constraints (9)–(13) found a solution faster. Figure 10
shows the instances solved by both sets of constraints, in almost all the cases using constraints (9)–
(13) results in shorter computation times, even though the model has more discrete variables. The
dashed line in the figure is always above the solid line of constraints (9)–(13). Logarithmic scale is
used in Fig. 10 since some computations take only a fraction of a second and some up to 60,000 sec-
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onds. Three instances, LPR-B-05-6-20-02, LPR-B-05-6-20-01, and LPR-A-05-4-20-01, were timed
out at 60,000 seconds using constraints (16)–(17). They are the three dashed points that do not
appear in the graph due to the scale. Constraints (9)–(13) solved these instances in around a hun-
dred seconds, therefore they adequately favor parity in the model, and prove to be more efficient
in solving all instances. Table A3 contains all the results for the instances that were solved with
constraints (9)–(13) replaced by constraints (16)–(17).

5. Closing remarks

A districting model that services arc routing activities is proposed. The model produces partitions
that are contiguous, have a work load balance, acquired imparity under a given tolerance, and have
minimal dispersion around the depots.

The use of parity constraints is a novelty. Odd degree nodes in district partitions impact vehicle
routing since they translate into deadhead time. We introduce a set of constraints that limits imparity
and could be helpful in any other districting models that lead to vehicle routing.

An exact solution procedure based on branch and bound with a cut generation strategy was
successfully applied to solve the model to optimality. Despite the exponential number of connectivity
constraints, the solution method can be easily implemented with any off-the-shelve branch-and-
bound solver. The algorithm solves, in a given iteration, a model with the connectivity constraints
relaxed. If an unconnected partition is produced, a valid inequality is generated and added, and the
model is resolved. This is repeated iteratively until a feasible and thus optimal solution is found.
The algorithm was able to solve most of the instances tested in a single iteration. This is due in
great extent to the disperse location of the depots. However, we provided some examples on how the
method successfully solves less common instances with closer depots generating cuts and finding
the solution in a few iterations. Compactness is favored on networks where the depots end up at
the center of their district due to the objective function of the model. If a specific problem calls for
neighboring or close depots another objective function would be recommended, for example, one
that takes into account distance between edges instead of their distance to the depot.

Series of instances were solved to determine the impact of the parity constraint on the objective
function and resulting partitions. Networks with up to 491 nodes, 763 edges whose associated model
has 12,203 discrete variables were solved successfully. By having the parity constraints in the model,
solutions with less deadhead distances are possible. This is of great impact to the routing of vehicles.

The model is useful at a tactical level as it can be used to promote characteristics of interest to
specific applications. Parameters can be adjusted for workload balance, and parity that traduces to
deadhead distance. This generality produces solutions with different characteristics, depending on
how their tolerances are set. A sensitivity analysis between these features has been studied and some
results are presented. The obtained results indicate that the parity constraints seem useful as it leads
to partitions that allow efficient vehicle routing. Future work in developing heuristics is suggested
by the impossibility of finding feasible solutions for very large instances.

Possible extensions of this research worth pursuing involve the study of districting problems
with districting–routing decisions. When both districting and routing decisions are to be taken
into account simultaneously, the way the service/traversal of an arc becomes critical. For instance,
depending on the application, it could happen that streets are not served in one traversal or it is not
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allowed to traverse the streets in both directions. In some applications more than one tour could
be assigned to each depot. Furthermore, there are applications where the demand is not necessarily
proportional to the length of the street as assumed in our work. For example, for meter reading a
small street with some apartment blocks may have a higher demand than a large street with some
single-family houses.

In this work, we maximize the compactness and consider balance and deadheading distance
as constraints. Hence, it would be very interesting to study the problem from a multi-objective
programming approach and develop approximations to the Pareto-optimal front. For instance, an
interesting question arises when assessing the deadhead distances found when optimizing compact-
ness. That is, if one wants to find the optimal deadhead distances and treats compactness as a
constraint, the resulting MILP model is harder to solve.
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Duque, J.C., Ramos, R., Suriñach, J., 2007. Supervised regionalization methods: a survey. International Regional Science

Review 30, 3, 195–220.
Gouveia, L., Mourão, M.C., Pinto, L.S., 2010. Lower bounds for the mixed capacitated arc routing problem. Computers

& Operations Research 37, 4, 692–699.
Haugland, D., Ho, S.C., Laporte, G., 2007. Designing delivery district for the vehicle routing problem with stochastic

demands. European Journal of Operational Research 180, 3, 997–1010.
Horn, D.L., Hampton, C.R., Vandenberg, A.J., 1993. Practical application of district compactness. Political Geography

12, 2, 103–120.
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Appendix

The results of each tested instance are shown in Tables A1–A3. Table A1 contains the results of
all instances solved by the model that reached optimal solution in one iteration. Table A3 contains
instances that were solved with constraints (9)–(13) replaced by constraints (16)–(17). Both tables
have nine columns. First three columns of the tables are related with the characteristics of the
problem and state the number, the name, and the discrete variables of each of the instances. Next
three columns are related with the objective function presenting the computation time in CPU
seconds, the solver gap, if any, and the objective value. The next two columns show the gained
imparity

∑
i∈V ri and the imparity quotient 1

|V |
∑

i∈V ri, which in the model is limited by τ2. Finally
the last column is the sum all districts of the calculated deadhead distance a single vehicle would
drive in order to service a district.

Table A1
Results for all LPR instances solved with original model in one iteration

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

1 LPR-A-01-2-20-20 300 0.047 0 28,225.72 1 0.0357 1404.31
2 LPR-A-01-3a-20-20 436 0.265 0 19,545.77 2 0.0714 1791.73
3 LPR-A-01-3b-20-20 436 0.125 0 24,381.38 4 0.1429 1793.53
4 LPR-A-02-2-20-20 553 0.266 0 104,262.04 2 0.0377 3382.83
5 LPR-A-02-2-10-20 553 0.265 0.0008 104,279.75 2 0.0377 3535.82
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Table A1
Continued

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

6 LPR-A-02-2-05-20 553 0.140 0 104,364.48 2 0.0377 3517.42
7 LPR-A-03-2-20-20 1526 0.203 0 338,238.35 3 0.0205 6649.08
8 LPR-A-03-2-10-20 1526 0.655 0 338,238.35 3 0.0205 6649.08
9 LPR-A-03-3-20-20 2216 0.156 0 277,194.12 10 0.0685 7222.31
10 LPR-A-03-3-20-05 2216 0.432 0 277,741.11 2 0.0137 6393.14
11 LPR-A-03-3-20-01 2216 0.515 0 278,068.71 0 0.0000 6143.33
12 LPR-A-03-3-10-20 2216 0.655 0 278,236.73 6 0.0411 7085.64
13 LPR-A-03-4-10-20 2906 0.795 0 218,692.54 6 0.0411 7949.95
14 LPR-A-03-4A-20-20 2906 0.296 0 225,444.46 4 0.0274 7674.86
15 LPR-A-03-4A-10-20 2906 0.982 0 230,674.05 5 0.0342 7632.82
16 LPR-A-03-4B-20-20 2906 0.390 0 205,955.13 9 0.0616 7721.61
17 LPR-A-03-4B-10-20 2906 0.897 0 210,081.05 10 0.0685 7942.34
18 LPR-A-03-4D-20-20 2906 0.624 0 234,829.70 13 0.0890 7830.63
19 LPR-A-03-4D-10-20 2906 0.789 0.000009 235,274.03 16 0.1096 8091.29
20 LPR-A-03-5-20-20 3596 0.374 0 182,090.43 11 0.0753 7988.49
21 LPR-A-03-5-10-20 3596 0.733 0 184,797.06 11 0.0753 7685.05
22 LPR-A-04-4-20-100 3891 0.748 0 291,013.88 11 0.0564 9560.46
23 LPR-A-04-4-20-10 3891 0.748 0 291,013.88 11 0.0564 9560.46
24 LPR-A-04-4-20-04 3891 0.858 0 291,132.37 7 0.0360 9640.95
25 LPR-A-04-4-20-03 3891 1.357 0.000008 291,255.70 5 0.0260 9199.70
26 LPR-A-04-4-20-02 3891 0.702 0.000004 291,484.67 3 0.0150 8978.24
27 LPR-A-04-4-20-01 3891 0.874 0 291,746.50 1 0.0050 8584.50
28 LPR-A-04-4-10-20 3891 0.390 0 294,378.01 10 0.0513 9722.13
29 LPR-A-05-4-20-100 6409 0.889 0 710,050.53 17 0.0530 15,261.36
30 LPR-A-05-4-20-05 6409 0.593 0.000003 710,071.45 14 0.0436 15,105.16
31 LPR-A-05-4-20-04 6409 0.624 0.000009 710,116.40 12 0.0374 15,073.37
32 LPR-A-05-4-20-03 6409 0.624 0 710,218.53 9 0.0280 14,872.61
33 LPR-A-05-4-20-02 6409 1.435 0 710,478.15 6 0.0187 14,751.84
34 LPR-A-05-4-20-01 6409 0.718 0.000007 710,921.49 3 0.0093 14,255.61
35 LPR-B-01-2-20-100 290 0.109 0 28,318.27 1 0.0357 1416.61
36 LPR-B-01-2-20-03 290 0.047 0 28,527.56 0 0.0000 1259.78
37 LPR-B-02-2-20-100 551 0.234 0 94,741.95 0 0.0000 3142.43
38 LPR-B-02-2-10-100 551 0.234 0 95,237.12 3 0.0566 3918.10
39 LPR-B-02-2-09-100 551 0.140 0 95,238.63 4 0.0755 3663.00
40 LPR-B-02-2-08-100 551 0.203 0 95,325.27 3 0.0566 3466.25
41 LPR-B-02-2-06-100 551 0.218 0 95,458.07 3 0.0566 3486.76
42 LPR-B-02-2-05-100 551 0.094 0 95,547.84 2 0.0377 3104.21
43 LPR-B-02-2-04-100 551 0.156 0 95,680.64 2 0.0377 3124.72
44 LPR-B-02-2-02-100 551 0.198 0 95,908.54 2 0.0377 3045.28
45 LPR-B-02-2-01-100 551 0.156 0 95,908.54 2 0.0377 3045.28
46 LPR-B-02-2-00-100 551 104.100 0 96,820.48 4 0.0755 3708.30
47 LPR-B-03-4-10-100 3287 0.234 0 249,796.77 7 0.0429 8086.31
48 LPR-B-03-4-20-100 3287 0.234 0 249,074.20 7 0.0429 8297.09
49 LPR-B-03-4-20-04 3287 0.301 0 249,090.10 6 0.0368 8186.11
50 LPR-B-03-4-20-03 3287 0.359 0 249,119.28 4 0.0245 8143.17
51 LPR-B-03-4-20-02 3287 0.328 0 249,150.66 3 0.0184 8253.71
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Table A1
Continued

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

52 LPR-B-03-4-20-01 3287 0.374 0 249,227.11 1 0.0061 7895.36
53 LPR-B-04-4-20-100 6293 29.141 0 380,014.97 14 0.0565 10,120.24
54 LPR-B-04-4-20-05 6293 28.282 0.000004 380,016.52 12 0.0484 9888.36
55 LPR-B-04-4-20-04 6293 26.738 0 380,076.63 9 0.0363 9733.93
56 LPR-B-04-4-20-03 6293 30.311 0 380,221.68 7 0.0282 9123.67
57 LPR-B-04-4-20-02 6293 27.019 0 380,536.59 4 0.0161 8622.09
58 LPR-B-04-4-20-01 6293 26.739 0 380,785.88 2 0.0081 8282.40
59 LPR-B-05-6-20-100 12,203 122.320 0.000009 711,108.32 22 0.0549 16,270.15
60 LPR-B-05-6-20-05 12,203 123.506 0.000009 711,122.88 20 0.0499 16,281.55
61 LPR-B-05-6-20-02 12,203 126.221 0.00001 711,699.23 8 0.0200 15,629.88
62 LPR-B-05-6-20-01 12,203 133.365 0.000007 711,990.07 4 0.0100 15,005.60
63 LPR-C-01-3-20-100 421 0.218 0 17,325.62 5 0.1786 1966.98
64 LPR-C-01-3-20-10 421 0.031 0 17,501.45 2 0.0714 1528.21
65 LPR-C-01-3-20-04 421 0.249 0 17,635.76 1 0.0360 2090.34
66 LPR-C-01-3-20-03 421 0.234 0 17,894.65 0 0.0000 1681.27
67 LPR-C-02-3-20-100 803 0.609 0 58,836.93 6 0.1132 4523.47
68 LPR-C-02-3-20-10 803 0.624 0 58,847.73 5 0.0943 4461.14
69 LPR-C-02-3-20-04 803 0.452 0 59,021.54 2 0.0380 3956.02
70 LPR-C-02-3-20-03 803 0.483 0 59,267.68 1 0.0190 3838.51
71 LPR-C-02-3-20-01 803 0.483 0 59,583.99 0 0.0000 3407.74
72 LPR-C-03-4-20-100 3351 7.582 0 263,035.30 10 0.0614 8354.04
73 LPR-C-03-4-20-05 3351 10.031 0 263,123.05 8 0.0491 8361.60
74 LPR-C-03-4-20-04 3351 11.638 0 263,171.69 6 0.0368 8282.36
75 LPR-C-03-4-20-03 3351 7.754 0 263,321.96 4 0.0245 8089.14
76 LPR-C-03-4-20-02 3351 7.847 0 263,404.52 3 0.0184 8023.91
77 LPR-C-03-4-20-01 3351 10.140 0 263,760.40 1 0.0061 7419.36
78 LPR-C-04-3-20-100 4312 52.494 0.000009 943,293.89 13 0.0469 11,323.84
79 LPR-C-04-3-20-04 4312 40.404 0 943,318.28 11 0.0397 11,437.87
80 LPR-C-04-3-20-03 4312 102.914 0.00001 943,425.82 8 0.0289 10,996.33
81 LPR-C-04-3-20-02 4312 99.529 0.000009 943,619.75 5 0.0181 10,497.89
82 LPR-C-04-3-20-01 4312 102.103 0.000009 944,016.38 2 0.0072 10,670.64
83 LPR-C-05-4-20-100 7569 225.312 0.000005 853,979.50 12 0.0325 15,655.47
84 LPR-C-05-4-20-03 7569 94.552 0.000008 854,018.26 11 0.0298 15,830.33
85 LPR-C-05-4-20-02 7569 119.839 0.000008 854,197.80 7 0.0190 15,073.15
86 LPR-C-05-4-20-01 7569 180.743 0.000009 854,623.55 3 0.0081 15,044.66

Table A2
Instances that required more than one iteration

Instance NIV Time Gap Objective Iterations

87 LPR-A-03-4c-10-20 2906 32.324 0.000010 244,045.1 3
88 LPR-A-01-3-20-20 436 4.380 0.000009 22,276.2 36
89 LPR-B-01-3-20-20 421 2.602 0.000002 24,187.8 22
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Table A3
Results for model solved with constraints (9)–(13) replaced by constraints (16)–(17)

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

90 LPR-A-01-2-20-20 272 0.11 0 28,225.72 1 0.0357 1404.3
91 LPR-A-02-2-20-20 500 0.61 0 104,262.04 2 0.0377 3382.8
92 LPR-A-02-2-05-20 500 0.59 0 104,364.48 2 0.0377 3517.4
93 LPR-A-03-2-20-20 1380 6.44 0 338,238.35 2 0.0205 6649.1
94 LPR-A-03-3-20-20 2070 12.31 0 277,194.12 10 0.0685 7222.3
95 LPR-A-03-3-10-20 2070 12.11 0.000009 278,234.22 6 0.0411 7085.6
96 LPR-A-03-4A-20-20 2760 10.53 0 225,444.46 4 0.0274 7674.9
97 LPR-A-03-4A-10-20 2760 10.23 0 230,674.05 5 0.0342 7632.8
98 LPR-A-03-4B-20-20 2760 10.03 0 205,955.13 9 0.0616 7721.6
99 LPR-A-03-4B-10-20 2760 8.32 0 210,081.05 10 0.0685 7942.3
100 LPR-A-03-4C-20-20 2760 8.55 0.000008 282,045.70 12 0.0822 8982.5
101 LPR-A-03-4C-10-20 2760 6.51 0.00001 283,933.59 10 0.0685 8827.2
102 LPR-A-03-5-20-20 3450 9.89 0 182,132.80 10 0.0685 7679.1
103 LPR-A-03-5-10-20 3450 5.52 0 184,825.89 9 0.0616 7597.0
104 LPR-A-04-4-20-20 3696 24.32 0 291,013.88 11 0.0564 9560.5
105 LPR-A-04-4-10-20 3696 12.17 0 294,378.01 10 0.0513 9722.1
106 LPR-A-04-4-20-05 3696 22.61 0.000009 291,604.11 2 0.0103 8786.1
107 LPR-A-05-4-20-02 6088 57.30 0 711,398.03 1 0.0031 14,103.1
108 LPR-A-05-4-20-01 6088 60,000.00 - - - - -
109 LPR-B-01-2-20-100 262 0.13 0 28,318.27 1 0.0357 1416.6
110 LPR-B-01-2-20-03 262 0.11 0 28,527.56 0 0.0000 1259.8
111 LPR-B-02-2-20-100 498 0.66 0 94,741.95 0 0.0000 3142.4
112 LPR-B-02-2-10-100 498 0.77 0 95,237.12 3 0.0566 3918.1
113 LPR-B-02-2-09-100 498 0-608 0 95,238.63 4 0.0755 3663.0
114 LPR-B-02-2-08-100 498 0.62 0 95,325.27 3 0.0566 3466.3
115 LPR-B-02-2-06-100 498 0.61 0 95,458.07 3 0.0566 3486.8
116 LPR-B-02-2-05-100 498 0.72 0 95,547.84 2 0.0377 3104.2
117 LPR-B-02-2-04-100 498 0.72 0 95,680.64 2 0.0377 3124.7
118 LPR-B-02-2-01-100 498 0.69 0 95,908.54 2 0.0377 3045.3
119 LPR-B-02-2-00-100 498 0.59 0 96,820.48 4 0.0755 3708.3
120 LPR-B-03-4-10-100 3124 8.91 0 249,796.77 7 0.0429 8086.3
121 LPR-B-03-4-20-100 3124 7.58 0 249,074.20 7 0.0429 8297.1
122 LPR-B-03-4-20-04 3124 12.93 0 249,227.11 1 0.0061 7895.4
123 LPR-B-04-4-20-100 6045 26.83 0 380,014.97 14 0.0565 10,120.2
124 LPR-B-04-4-20-05 6045 27.22 0 380,633.89 3 0.0121 8432.6
125 LPR-B-04-4-20-04 6045 27.25 0 380,785.88 2 0.0081 8282.4
126 LPR-B-04-4-20-03 6045 28.74 0 380,996.61 1 0.0040 8476.3
127 LPR-B-04-4-20-02 6045 28.58 0 380,996.61 1 0.0040 8476.3
128 LPR-B-04-4-20-01 6045 32.04 0.000009 381,357.10 0 0 8497.4
129 LPR-B-05-6-20-100 11,802 125.55 0 711,108.32 22 0.0549 16,270.2
130 LPR-B-05-6-20-05 11,802 126.58 0.00001 711,990.07 10 0.0249 15,005.6
131 LPR-B-05-6-20-02 11,802 60,000.00 - - - - -
132 LPR-B-05-6-20-01 11,802 60,000.00 - - - - -
133 LPR-C-01-3-20-100 393 0.13 0 17,325.62 5 0.17857 1967.0
134 LPR-C-01-3-20-10 393 0.12 0 17,894.65 0 0 1925.1
135 LPR-C-02-3-20-100 750 0.64 0 58,836.93 10 0.1887 4523.5
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Table A3
Continued

Instance NIV Time Gap Objective
∑

i∈V ri
1

|V |
∑

i∈V ri Deadhead

136 LPR-C-02-3-20-10 750 0.66 0 59,267.68 1 0.0189 3838.5
137 LPR-C-03-4-20-100 3188 8.42 0 263,035.30 11 0.0675 8354.0
138 LPR-C-03-4-20-05 3188 7.63 0.000006 263,527.73 3 0.0184 7994.3
139 LPR-C-03-4-20-04 3188 11.06 0.000003 263,760.40 1 0.0061 7419.4
140 LPR-C-03-4-20-03 3188 8.16 0 263,760.40 1 0.0061 7419.4
141 LPR-C-03-4-20-02 3188 7.72 0 263,883.61 0 0 7401.4
142 LPR-C-03-4-20-01 3188 14.57 0.000009 263,883.61 0 0 7389.7

Note: “-” means no feasible solution was reported.
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