
Expert Systems With Applications 44 (2016) 102–113

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

GRASP with path relinking for commercial districting

Roger Z. Ríos-Mercado a,∗, Hugo Jair Escalante b

a Graduate Program in Systems Engineering, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, NL, Mexico
b Computer Science Department, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, Puebla, Mexico

a r t i c l e i n f o

Keywords:

Service industry

Districting

Metaheuristics

GRASP

Path relinking

a b s t r a c t

The problem of grouping basic units into larger geographic territories subject to dispersion, connectivity,

and balance requirements is addressed. The problem is motivated by a real-world application from the bot-

tled beverage distribution industry. Typically, a dispersion function is minimized as compact territories are

sought. Existing literature reveals that practically all the works on commercial districting use center-based

dispersion functions. These center-based functions yield mixed-integer programming models with some nice

properties; however, they have the disadvantage of being very costly to be properly evaluated when used

within heuristic frameworks. This is due to the center updating operations frequently needed through the

heuristic search. In this work, a more robust dispersion measure based on the diameter of the formed territo-

ries is studied. This allows a more efficient heuristic search computation. For solving this particular territory

design problem, a greedy randomized adaptive search procedure (GRASP) that incorporates a novel con-

struction procedure where territories are formed simultaneously in two main stages using different criteria

is proposed. This also differs from previous literature where GRASP was used to build one territory at a time.

The GRASP is further enhanced with two variants of forward-backward path relinking, namely static and

dynamic. Path relinking is a sophisticated and very successful search mechanism. This idea is novel in any

districting or territory design application to the best of our knowledge. The proposed algorithm and its com-

ponents have been extensively evaluated over a wide set of data instances. Experimental results reveal that

the construction mechanism produces feasible solutions of acceptable quality, which are improved by an ef-

fective local search procedure. In addition, empirical evidence indicate that the two path relinking strategies

have a significant impact on solution quality when incorporated within the GRASP framework. The ideas and

components of the developed method can be further extended to other districting problems under balancing

and connectivity constraints.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The territory design problem (TDP) may be viewed as the prob-

lem of grouping small geographic basic units (BUs) into larger geo-

graphic clusters, called territories, in a way that the territories are

acceptable (or optimal) according to relevant planning criteria. Ter-

ritory design or districting has a broad range of applications such as

political districting, sales territory design, school districting, power

districting, and public services, to name a few. The reader can find in

the works of Kalcsics, Nickel, and Schröder (2005) and Duque, Ramos,

and Suriñach (2007) state of the art surveys on models, algorithms,

and applications to districting problems.

The problem addressed in this paper is a commercial territory de-

sign problem (CTDP) motivated by a real-world application from the
∗ Corresponding author. Tel.: +52 8183294000x1634.
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ottled beverage distribution industry. The problem, introduced by

íos-Mercado and Fernández (2009), considers finding a design of

territories with minimum dispersion subject to planning require-

ents such as exclusive BU-to-territory assignment, territory con-

ectivity, and territory balancing with respect to three BU attributes:

umber of customers, product demand, and workload.

An important criterion in territory design problems is compact-

ess. Typically this is achieved by minimizing a dispersion function.

n commercial territory design, several models based on dispersion

unctions from the well-known p-center and p-median location prob-

ems have been studied in the past. These are center-based disper-

ion functions, that is, the dispersion is measured with respect to

centroid of a territory. However, there are other non-center-based

easures of dispersion that can be used. Center-based functions rely

eavily on the location of the centers; if the centers are “badly” lo-

ated, the resulting design may cause a serious deterioration in ob-

ective function. In addition, in location problems, the centers repre-

ent a physical entity or facility that provides some service; however,
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n CTDPs the centers are artificially located as no facility is actually

laced there, it is just a reference for the dispersion measure. These

imitations motivate the study on other ways of measuring disper-

ion. For instance, a measure such as the diameter, which measures

he longest distance between any two basic units in a territory, is

more robust function since it does not depend on a center loca-

ion, providing more flexibility. Even from the algorithmic perspec-

ive, heuristic methods for tackling TDPs under center-based disper-

ion functions need to constantly update and recompute as centers

eep moving along every time the territory suffers a change. This

ime-consuming task can be avoided if other measures such as the

iameter are used.

In this work, we focus our study in a commercial territory design

roblem that seeks to minimize territory dispersion based on a di-

meter dispersion measure. To the best of our knowledge, this type

f problem has not been addressed before in the territory design lit-

rature. Since the aim is to target large instances, we present a greedy

andomized adaptive search procedure (GRASP) with path relinking

or this NP-hard CTDP. The algorithm is denoted as GPR_CTDP. In our

roposed GRASP we develop a procedure that builds exactly p terri-

ories at once simultaneously, that is, we start with p node seeds and

tart associating nodes to the seeds until all of them are assigned. By

rowing the territories simultaneously rather than one at a time one

xpects that the violation of the balancing constraints be consider-

bly lower. In addition, we develop two path relinking (PR) strate-

ies, one dynamic and one static, motivated by the work of Resende,

artí, Gallego, and Duarte (2010a), who successfully applied it to the

ax–min diversity problem. In our work, these PR strategies rely on

nding a “path” between two different territory designs. To this end,

n associated assignment subproblem for finding the best match be-

ween territory centers is solved. The solution to this problem pro-

ides a very nice way of generating the trajectory between two given

esigns. This idea is novel in any districting or territory design appli-

ation to the best of our knowledge.

To assess its efficiency, the proposed GPR_CTDP with many of its

omponents and strategies has been extensively evaluated over a

ide set of data instances. We have found, for instance, that building

erritories simultaneously results in feasible solutions of acceptable

uality. The two PR variants implemented in GPR_CTDP allowed us

o obtain better solutions than those obtained when using straight

ocal search; although, the static strategy resulted more helpful. The

ain algorithmic ideas incorporated in the developed algorithm can

e extended so as to handle other districting problems with similar

tructure.

The paper is organized as follows. In Section 2 we describe the

roblem in detail and present a combinatorial optimization model.

ection 3 gives an overview of relevant previous related work.

ection 4 describes in detail the components of the proposed heuris-

ic, and Section 5 presents the empirical evaluation of the method. We

nd the paper in Section 6, with some conclusions and final remarks.

. Problem description

Let G = (V, E) denote a graph where V is the set of city blocks or

asic units (BUs), and E is the set of edges representing adjacency be-

ween blocks, that is, (i, j) ∈ E if and only if BUs i and j are adjacent

locks. Let dij denote the Euclidean distance between BUs i and j, with

, j ∈ V. For each BU i ∈ V there are three associated parameters. Let
a
i

be the value of activity a at node i, where a = 1 (number of cus-

omers), a = 2 (product demand), and a = 3 (workload). The number

f territories is given by the parameter p. A p-partition of V is de-

oted by X = (X1, . . . , Xp), where Xk ⊂ V is called a territory of V. Let
a(Xk) = ∑

i∈Xk
wa

i
denote the size of territory Xk with respect to ac-

ivity a ∈ A = {1, 2, 3} and k ∈ K = {1, . . . , p}. The balancing planning

equirements are modeled by introducing a user-specified tolerance

arameter τ a that measures the allowable relative deviation from the
arget average size μa, given by μa = wa(V)/p, for each activity a ∈
. Another planning requirement is that all of the nodes assigned to

ach territory are connected by a path contained totally within the

erritory. In other words, each of the territories Xk must induce a con-

ected subgraph of G. Finally, we seek to maximize territory com-

actness or, equivalently, minimize territory dispersion, where dis-

ersion is given by the largest diameter over all territories, that is

axk=1,...,p maxi, j∈Xk
{di j}.

Let � be the collection of all p-partitions of V. The combinatorial

ptimization model is given as follows.

Model (CTDP)

in
X∈�

f (X) = max
k∈K

max
i, j∈Xk

{di j} (1)

ubject to
wa(Xk)

μa
∈ [1 − τ a, 1 + τ a] k ∈ K, a ∈ A (2)

k = G(Vk, E(Vk)) is connected k ∈ K (3)

Objective (1) measures territory dispersion. Constraints (2) rep-

esent the territory balance with respect to each activity measure as

t establishes that the size of each territory must lie within a range

measured by tolerance parameter τ a) around its average size. Con-

traints (3) guarantee the connectivity of the territories, where Gk is

he graph induced in G by the set of nodes Xk. Note that there is an

xponential number of such constraints.

The model can be viewed as partitioning G (the contiguity graph

epresenting the BUs) into p connected components (contiguous dis-

ricts) under the additional side constraints on balancing product

emand, number of customers, and workload of each territory, and

inimizing a dispersion measure of the BUs in a territory. The basic

ontiguity graph model for the representation of a territory divided

nto elementary units has been adopted in political districting (Ricca

Simeone, 2008).

. Related work

Territory design or districting has a broad range of applications

uch as political districting (Bozkaya, Erkut, & Laporte, 2003; Browdy,

990; Forman & Yue, 2003; Mehrotra, Johnson, & Nemhauser, 1998;

ukelsheim, Ricca, Simeone, Scozzari, & Serafini, 2012; Ricca & Sime-

ne, 2008), sales territory design (Drexl & Haase, 1999; Zoltners

Sinha, 1983; 2005), school districting (Caro, Shirabe, Guignard,

Weintraub, 2004), power districting (de Assis, Franca, & Usberti,

014; Bergey, Ragsdale, & Hoskote, 2003), and public services (Blais,

apierre, & Laporte, 2003; D’Amico, Wang, Batta, & Rump, 2002;

uyldermans, Cattryse, Oudheusden, & Lotan, 2002), to name a few.

he reader can find in the works of Kalcsics et al. (2005) and Duque

t al. (2007) state of the art surveys on models, algorithms, and appli-

ations to districting problems. Zoltners and Sinha (2005) present a

urvey focusing on sales districting and Ricca, Scozzari, and Simeone

2013) present a survey on political districting.

Here we discuss the related work on commercial territory de-

ign. Ríos-Mercado and Fernández (2009) introduced the commer-

ial TDP by incorporating a territory compactness criterion and a

xed number of territories p. They seek to maximize this compact-

ess criterion subject to planning requirements such as exclusive

U-to-territory assignment, territory connectivity, and territory bal-

ncing with respect to three BU attributes: number of customers,

roduct demand, and workload. In their work, the authors consider

s a minimization function a dispersion function based on the objec-

ive function of the well-known p-Center Problem. After establishing

he NP-completeness of the problem, the authors propose a Reactive

RASP for obtaining high-quality solutions to this problem. The core

f their GRASP is a three-phase iterative procedure composed by a

onstruction phase, an adjustment phase, and a local search phase. In
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the construction phase a solution with q territories, where q is usu-

ally larger than p, satisfying the connectivity constraints is built. Then

an adjustment phase based on a pairwise merging mechanism is ap-

plied to obtain a solution with p territories. Afterwards, a local search

phase attempting both to eliminate the infeasibility with respect to

the balancing requirements and to improve the dispersion objective

function is applied. One interesting observation is that the construc-

tion and adjustment phases produce solutions with very high degree

of infeasibility. This is very nicely repaired by the local search, at a

very high computational cost though. The reason for this is that at-

tempting to merge two territories into one in the adjustment phase

may result in a high violation of the upper bound of the balancing

constraints.

Salazar-Aguilar, Ríos-Mercado, and Cabrera-Ríos (2011) present an

exact optimization framework for tackling relatively small instances

of several CDTP models. They studied two linear models that differ in

the way they measure dispersion, one model uses a dispersion func-

tion based on the objective of the p-Median Problem (MPTDP) and

the other is based on the p-Center Problem (CPTDP). They can suc-

cessfully solve instances of up to 100 BUs for the CPTDP and up to

150 BUs for the MPTDP. This concludes that p-center-based disper-

sion measures yield more difficult models as they have weaker LP

relaxations than the median-based models.

Ríos-Mercado and Salazar-Acosta (2011) present a heuristic based

on GRASP and adaptive memory programming for a CTDP that con-

siders the minimization of a p-Center Problem function subject to ad-

ditional budget routing constraints.

López-Pérez and Ríos-Mercado (2013) and Ríos-Mercado and

López-Pérez (2013) extend the CTDP model by incorporating addi-

tional planning criteria such as joint and disjoint assignment require-

ments and similarity with the existing plan. Joint (disjoint) assign-

ment means that a given set of customers must be assigned to the

same (different) territory. Similarity with existing plan means that

the new plan must be similar to the previous plan by allowing only

a small portion of the basic units to be assigned to different terri-

tories. In this work, the authors use a p-Median Problem objective

function for measuring dispersion. The authors develop a mathemat-

ical programming approach for dealing with the customer allocation

level with relatively success by solving a surrogate mixed-integer

programming model.

One of the most popular methods for addressing districting prob-

lems is the location-allocation technique (Kalcsics et al., 2005). How-

ever, this technique is not applicable to our problem mainly because

the nature of the dispersion objective function is different. As it has

been show, the location-allocation method seems to work well when

a p-Median Problem-based objective function is used. From a theo-

retical perspective, Elizondo-Amaya, Ríos-Mercado, and Díaz (2014)

develop a lower bounding scheme for the CDTP based on Lagrangian

relaxation that considers a p-center based objective function.

CTDP has also been addressed from a multiobjective optimization

perspective. Salazar-Aguilar, Ríos-Mercado, and González-Velarde

(2011) present an exact optimization method for obtaining Pareto

fronts for relatively small instances for the problem where both

territory compactness and balance are simultaneously optimized.

Salazar-Aguilar, Ríos-Mercado, González-Velarde, and Molina (2012)

and Salazar-Aguilar, Ríos-Mercado, and González-Velarde (2013) de-

velop heuristic methods based on scatter search and GRASP, respec-

tively, for addressing larger instances. Their heuristics find good qual-

ity approximations to the Pareto fronts; however, in each of these

multi-objective optimization approaches center-based functions are

used for measuring territory dispersion.

Summarizing these most relevant works on commercial TDP, all

of them address dispersion functions based on territory centers. One

of the reasons is that center-based functions yield well-structured

mixed-integer programming models which in turn can lead to rel-

atively good optimization algorithms. However, this relative advan-
age is somewhat lost when addressing a problem from the heuristic

erspective. For instance, every time a territory changes, one must

heck and recompute if necessary a new center which involves com-

utation between all pairs of basic units. In the past, one way au-

hors have addressed this issue is by choosing not to update the cen-

ers every time but periodically. This has the negative consequence

f not having the correct and precise value of the dispersion objec-

ive function all the time. As stated previously, CTDPs with diameter-

ased dispersion functions have not been studied in the past. To the

est of our knowledge, our work is the first to introduce a non-center

ased measure of dispersion in the CDTP context. In fact, using non-

enter-based functions such as the diameter may be more convenient

ince no time consuming center updating operations are needed. It is

more robust measure in this sense.

. Proposed heuristic

It is important to note that we are introducing a new model that

as not been studied before to the best of our knowledge. As stated in

he previous section, all existing methods developed for commercial

istricting are not applicable in this case given the different nature

f the objective function being optimized. In the same vein, exist-

ng clustering software is not tailored for handling highly constrained

roblems such as the one being addressed.

This section introduces the proposed GRASP heuristic with path

elinking for the commercial territory design problem (GPR_CTDP).

RASP is a well known meta-heuristic based on greedy search and

andom construction mechanisms Feo and Resende (1995) that has

een successfully used for many combinatorial optimization prob-

ems, including CTDP Ríos-Mercado and Fernández (2009). We pro-

ose a GRASP improved with path relinking (PR). One important

eature about GRASP when compared with other methods such as

opulation-based heuristics (genetic algorithms, particle swarm op-

imization, etc.) is that one can design the construction mechanism

n such a way to guarantee that the difficult constraints (such as con-

ectivity) are met, something very difficult to achieve by other meth-

ds. Naturally, the incorporation of a sophisticated search mechanism

uch as PR is expected to render solutions of much better quality than

hose obtained by simple local search. The heuristic comprises a new

onstruction procedure and a very effective PR mechanism. The con-

truction procedure intelligently handles a strategy for building ter-

itories simultaneously, while the PR formulation allows us to obtain

etter solutions than those obtained when using straight local search,

ee Section 5. The rest of this section describes in detail the compo-

ents of the GPR_CTDP approach, which receives as input an instance

f the CTDP and a set of parameters as described below.

.1. GRASP

A GRASP is an iterative process in which each major iteration con-

ists of two phases: construction and local search (Feo & Resende,

995). The construction phase attempts to build a feasible solution

nd the local search phase attempts to improve it. This process is re-

eated for a fixed number of iterations and the best overall solution

s returned as the result. GRASP incorporates greedy search and ran-

omization mechanisms that allow it to obtain high quality solutions

o combinatorial problems in acceptable times. Despite the simplic-

ty of this multi-start heuristic it has proved to be very effective in

wide range of problems and applications (see Resende and Ribeiro,

010). Previous work on GRASP for the CTDP is presented in Section 3.

n this paper we propose procedure GPR_CTDP, which is in essence a

RASP augmented with PR mechanisms, accordingly, in this section

e describe the particular construction and local search procedures

f the GRASP and the next subsection presents the PR strategies.
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Fig. 1. First stage of the proposed construction procedure for an instance of the CTDP.
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.1.1. Construction phase

At a given iteration, the construction phase consists of building p

erritories, X1, . . . , Xp, simultaneously in such a way that connectiv-

ty is always satisfied while infeasibility in terms of dispersion and

alance is allowed to some extent. Each territory Xk is formed by a

ubset of BUs or nodes such that ∪k=1,...,pXk = V and Xk ∩ Xl = ∅, for

ll k �= l. Under the proposed procedure each territory Xk is associated

o a center, c(k). This is not a requirement of the problem but a feature

f the proposed formulation that was adopted for convenience when

easuring dispersion of territories.

rocedure 1 grasp_construction( δ, L, α).

nput: δ: fraction of nodes assigned by the distance criteria;

L: interval for updating centers;

α: RCL quality parameter;

utput: X: A p-partition of V ;

(c(1), . . . , c(p)) ← max_disp( p );{Compute p initial centers}

i ← 0; V̄ ← V ;
while ( n − |V̄ | ≤ δn ) do

for all ( k ∈ {1, . . . , p} ) do

Nq(Xk) ← q nearest (unassigned) neighbors of Xk;
Xk ← Xk ∪ Nq(Xk); V̄ ← V̄ \ Nq(Xk);

end for

i ← i + 1;

if ( i module L = 0 ) then

c(k) ← min ( max dv,w), ∀v, w ∈ Xk , k = 1, . . . , p; {Update centers}

end if

end while

open(k) ← TRUE, k = 1, . . . , p;

while ( |V̄ | > 0 and ∃k such that open(k) == TRUE ) do

for all ( k = 1, . . . , p ) do

if ( open(k) = TRUE ) then

Compute φk(v) in Eq. (4), ∀ v ∈ N(Xk);
�min ← min{φk(v)}; �max ← max{φk(v)};
RCL ← {h ∈ N(Xk) : φk(h) ≤ �min + α(�max − �min)};

Choose v ∈ RCL randomly; Xk ← Xk ∪ {v}; V̄ ← V̄ \ {v};
if ( N(Xk) = ∅ or wa(Xk) > (1 + τ a) for any a ) then

open(k) ← FALSE; {Close this territory}

end if

end if

end for

end while

if (|V̄ | > 0) then

for all ( v ∈ V̄ ) do

Xv ← Nearest territory to node v;

Xv ← Xv ∪ {v}; V̄ ← V̄ \ {v};
end for

end if

return X = {X1, . . . , Xp};

Procedure 1 presents the construction phase of the proposed

PR_CTDP. V̄ denotes the set of nodes that have not been assigned

o any territory and n = |V | the number of BUs. The process starts by

electing p seeds or centers, {c(1), . . . , c(p)}, which are the first nodes

ssigned to each territory; that is, c(k) ∈ Xk, k ∈ {1, . . . , p}. Territories

re then built iteratively in two main stages followed by a postpro-

essing stage. In the first stage q BUs are iteratively assigned to each

erritory Xk. For each territory Xk, we iteratively assign the q (unas-

igned) nearest neighboring nodes of that territory, v ∈ Nq(Xk). The

Us in Nq(Xk) that are assigned to Xk must be connected by an edge to

BU already assigned to Xk. The latter process is iterated until a frac-

ion δ of the total of BUs have been assigned to one of the p territories

i.e. 
δn� BUs have been assigned), where the centers c(1), . . . , c(p)
re updated every L iterations. One should note that the notion of

enters is only used for this very-first phase of the construction pro-

edure and it is not used elsewhere.

Fig. 1 shows the BUs assigned after stage one of the construction

hase for an instance of the CTDP considered for experimentation.

rom this stage the p territories have been simultaneously built by

sing a neighborhood criteria completely ignoring the balance con-

traints. The rationale behind this is that nodes that belong to the

ame territory must be close to each other, hence a portion of nodes
an be assigned with a closeness criterion. The remaining nodes will

ie at boundaries among territories; therefore, balance and dispersion

nformation is taken into account for assigning those nodes.

An important aspect of stage one is that of selecting seed centers.

learly, randomness must be considered for this process as we want

o generate fairly different centers at each iteration of the GPR_CTDP

pproach. To this end, we view the problem of choosing an appropri-

te set of p initials seeds as a p-Dispersion Problem (Erkut, Ülküsal, &

eniçerioğlu, 1994), which is a combinatorial optimization problem

hat places p points in the plane as far way of each other as possible

y using an appropriate measure for maximizing dispersion. In our

rocedure, we used an approach that selects centers randomly with

maximum dispersion criteria. The particular strategy starts with a

andomly selected node as the center for the first territory and the

est of centers are obtained by using a greedy heuristic for the p-

ispersion problem (Erkut et al., 1994).

The second stage of the construction phase consists of assigning

he remaining n − 
δn� nodes that were not assigned in stage one.

or this stage BUs are assigned to territories using a greedy random-

zed adaptive procedure that takes into account both balance and dis-

ersion constraints. For each territory Xk, the cost of assigning every

eighboring node v ∈ N(Xk) to Xk is evaluated according to Eq. (4).

hen a restricted candidate list (RCL) is formed, from which a sin-

le BU is randomly selected and assigned to the current territory Xk.

his RCL is restricted by a quality parameter α, that is, RCL is formed

y those BUs whose greedy function evaluation falls within α per-

ent from the best evaluation. Eq. (4) determines the cost incurred

hen assigning node v to a territory Xk. This cost is determined by

linear combination of the weights assigned to nodes in territory

k∪{v}, as determined by the term Gk(v), and the dispersion of those

odes, as estimated by the term Fk(v), with Gk(v) and Fk(v) defined in

qs. (5)(6), respectively

k(v) = λFk(v) + (1 − λ)Gk(v), (4)

k(v) =
∑
a∈A

ga
k(v), (5)

k(v)=
(

1

dmax

)
f (Xk ∪ {v})=

(
1

dmax

)
max{ f (Xk), max

i∈Xk,v
{div})}, (6)

here f (Xk) = maxk∈K maxi, j∈Xk
{di j} is the dispersion measure (as

ictated by the objective function) and ga
k
(v) = 1

μa max{wa(Xk ∪
v}) − (1 + τ a)μa, 0} accounts for the sum of relative infeasibilities
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Fig. 2. Second and third stages of the proposed construction procedure for an instance

of the CTDP.

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

X − coordinates

Y
 −

 c
oo

rd
in

at
es

Fig. 3. Solution found after applying the local search procedure for an instance of the

CTDP.
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for the balancing constraints. Here dmax = maxi, j∈V {di j}, the maxi-

mum distance between any pair of nodes, is used for normalizing

the objective function. One should note that ga
k
(v) represents the in-

feasibility with respect to the upper bound of the balance constraint

for activity a. Both factors dispersion and balancing are weighted by

a parameter λ in expression (4). The process is repeated for every

territory k. If a territory exceeds the expected average weight for a

territory it is considered closed (i.e., open( j) = false) and no further

node can be assigned to it. The latter process iterates until either ev-

ery node has been assigned to a territory or every territory is con-

sidered closed. Since stage two of this construction phase does not

guarantee that all nodes will be assigned to a territory, a third stage

is applied in which each unassigned node gets assigned to its nearest

territory. Fig. 2 shows the distribution of BUs for an instance of the

CTDP after stages two and three of the construction procedure.

4.1.2. Local search

After a solution is build a postprocessing phase consisting of local

search is performed. The goal in this phase is to improve the objec-

tive function value and recovering feasibility (if violated) in the con-

structed solution, X. In this local search, a merit function that weights

both the infeasibility with respect to balancing constraints and the

objective function value is used. This function is indeed similar to the

greedy function used in the construction phase with the exception

that now the sum of relative infeasibilities take into consideration

lower and upper bound violation of the balancing constraints. Specif-

ically, the merit function for a given territory design X = {X1, . . . , Xp}
is given by

ψ(X) = λF(X) + (1 − λ)G(X) (7)

where

F(X) =
(

1

dmax

)
max

k∈K
max
i, j∈Xk

{di j} (8)

and

G(X) =
p∑

k=1

∑
a∈A

ga(Xk), (9)

with ga(Xk) = 1
μa max{wa(Xk) − (1 + τ a)μa, (1 − τ a)μa − wa(Xk),

0} being the sum of the relative infeasibilities of the balancing con-

straints. The quality of solutions is then determined by expression

(7), we now describe the mechanism for exploring solutions around

the constructed territory design. Let t(i) denote the territory node i
elongs to, i = 1, . . . , n. A move move(i, j) is defined as moving a node

from its current territory to a territory t(j), where t( j) �= t(i). Only

oves move(i, j) where (i, j) ∈ E and t(i) �= t( j) are allowed. Thus,

ove(i, j) transforms a solution X = (X1, . . . , Xt(i), . . . , Xt( j), . . . , Xp)

nto XT = (X1, . . . , Xt(i) \ {i}, . . . , Xt( j) ∪ {i}, . . . , Xp). If connectivity

ust be kept, only moves where Xt(i)�{i} remains connected are

llowed. Note that in general move(i, j) is asymmetric.

The basic idea of the local search is to start the search with a given

erritory, say territory k, and then consider first the moves emanat-

ng from territory k, that is, if we let N(Xk) denote the feasible moves

ove(i, j) with t(i) = k evaluate first all the moves in N(Xk), and take

he best that improves the current solution, if any. If none found,

roceed with territory (k + 1) mod p. As soon as a better move is

ound, perform the move, and restart the search from this new so-

ution XT but setting k + 1 as the starting territory, where k was the

ast territory examined, that is, in a new move the starting territory

s k + 1 and the final territory to be examined is k. By using this cyclic

trategy for starting territory we avoid performing many unnecessary

ove evaluations. A move is performed using a different territory

ach time until no improvements can be found. In practice an ad-

itional stopping criterion: the maximum number of allowed evalua-

ions of the fitness function (limit_evals), is added to avoid performing

n extensive search for long periods of time. Therefore, the postpro-

essing step stops when either a local optima is found or the number

f moves exceeds limit_evals. The postprocessing phase is described

n Procedure 2. Fig. 3 shows a solution obtained after applying the

ocal search procedure.

.2. Path relinking

Path relinking (PR) was originally proposed by Glover and col-

eagues as a way of incorporating intensification and diversification

trategies in tabu search (Glover, 1996). PR consists of exploring the

ath of intermediate solutions between two selected solutions called

tarting (XS) and target (XT) with the hypothesis that some of the in-

ermediate solutions can be either better than XS and XT (intensifi-

ation) or comparable but different enough from XS and XT (diversi-

cation). Intermediate solutions are generated by performing moves

rom the starting solution in such a way that these moves introduce

ttributes that are present in the target solution. Successful applica-

ions of PR in the context of Tabu and Scatter Search are reported in

esende, Ribeiro, Glover, and Martí (2010b).
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Procedure 2 local_search (X).

Input: X: A solution to the CTDP;

Output: X: Improved solution to the CTDP;

nmoves ← 0; local_optima ← FALSE;

k ← 1; {starting territory}

while ( nmoves ≤ limit_evals AND ¬local_optima ) do

improvement ← FALSE;

while ( |N(Xk)| > 0 and ¬improvement) do

move(i, j) ← Choose valid move from N(Xk);

N(Xk) ← N(Xk) \ {(i, j)};
Evaluate ψ(XT ) using Eq. (7);

if ( ψ(XT ) < ψ(X) ) then

X ← XT ; {perform move}

nmoves ← nmoves + 1;

improvement ← TRUE;

kend ← k;

k ← (k + 1) mod p;

end if

end while

if ( ¬improvement ) then

k ← (k + 1) mod p;

end if

if ( k = kend ) then

local_optima ← TRUE;

end if

end while

return X
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Fig. 4. Illustration of how to set up a search trajectory from two given designs (top) by

solving an associated Assignment Problem (bottom).
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Despite the fact that PR was originally proposed for Tabu and Scat-

er search, it has been successfully used with GRASP as well (Resende

Ribeiro, 2010; Resende et al., 2010b). In the context of GRASP, PR

an be considered as a way of introducing memory into the search

rocess. To the best of our knowledge PR has not been used in the

ontext of territory design, although it has been recently applied to

he related problem of capacitated clustering Deng and Bard (2011).

hereas both problems are related, the proposed formulations dif-

er significantly. For example, Deng and Bard did not consider cen-

ers in their PR approach and they proposed a single PR variant (at a

luster-level basis). Deng and Bard report experiments with less than

0 nodes and 5 clusters, while in Section 5 we report instances of up

o 500 nodes and 10 territories.

Different PR variants have been proposed so far each having bene-

ts and limitations in terms of efficiency and efficacy. In this work we

onsider two variants of forward–backward PR, namely static and dy-

amic, that have proven very effective in related problems (Resende

t al., 2010a). For excellent surveys on applications of GRASP with PR

e refer the reader to the work of Resende and Ribeiro (2010).

The so called, forward–backward PR strategies explore the paths

etween XS and XT in two different ways (i.e., from XS to XT and vicev-

rsa) (Resende and Ribeiro, 2010). The main benefit of these strate-

ies is that more and different solutions can be generated, although

t has been found that there is little gain over one-way strategies

Ribeiro, Uchoa, & Werneck, 2002). This can be due to the greed-

ness of usual PR methods, which evaluate every possible solution

hat can be generated by making a move from an initial solution

nd choose the move that results in the best intermediate solution

Resende et al., 2010a; Ribeiro et al., 2002). Thus, these methods ex-

lore a large number of solutions and, therefore, forward–backward

R does not help to improve the quality of final solutions. In this work

e select moves in such a way that a single move is evaluated for gen-

rating intermediate solutions. This form of PR is more efficient at

he expense of scarifying the benefit of greedy strategies. Neverthe-

ess, we believe that in the considered setting the use of a forward–

ackward PR strategy is advantageous.

Besides the direction of the search, there are other aspects that

ake PR strategies different (Resende and Ribeiro, 2010; Resende

t al., 2010a). For example, greedy-randomized PR methods form

RCL with candidate moves and select a move randomly as in

RASP (Faria, Binato, Resende, & Falcao, 2005). Truncated PR tech-
iques explore partially the trajectory between XS and XT. Evolution-

ry PR consists of evolving a reference set of solutions in a simi-

ar way as the reference set is evolved in scatter search (Resende &

erneck, 2004). In this work we developed static and dynamic PR

trategies that resulted very effective for the CTDP. Both strategies

ave been successfully used in other combinatorial optimization

roblems (Resende et al., 2010a). The rest of this section describes

he PR strategies incorporated in GPR_CTDP.

Recall each solution of the CTDP is an assignment of every node

∈ V to one of p territories X1, . . . , Xp. Let t(X, i) ∈ {1, . . . , p} denote

he index of the territory to which node i is assigned according to

olution X. Given two particular solutions XS and XT, PR aims at gen-

rating intermediate solutions or p-partitions in the path starting at
S and finishing at XT. In GPR_CTDP intermediate solutions are cre-

ted by changing t(XS, i), the territory to which node i is assigned in

olution XS into the corresponding territory t(XT, i). Because both XS

nd XT solutions are created independently, and the territory order-

ng may be arbitrary, it is not clear what territory in XS corresponds

o what territory in XT. Hence, a correspondence between territories

ust be obtained before starting the search process. The problem of

nding the best match between territories can be set as an Assign-

ent Problem (AP) by considering the territory centers only. Let C(X)

e the set of p node centers corresponding to solution X. Then a com-

lete bipartite graph is formed with sets C(XS) and C(XT), where the

ost between node i ∈ C(XS) and j ∈ C(XT) is given by dij. The AP can be

olved in polynomial time. We use one of the most recent implemen-

ations of the Hungarian algorithm (Burkard, Dell’Amico, & Martello,

009). A solution to the AP represents a minimum cost assignment

etween territory centers, and therefore a match between territories.

et M be the solution to AP given by M = {(i1, j1), . . . , (ip, jp)}. The

dea of the PR is then to “transform” each territory Xt(ik)
to territory

t( jk)
for each (ik, jk) ∈ M. The rationale for this matching stems from

he fact that it is expected that relatively close territories (from dif-

erent designs) will have many BUs in common. This scheme is illus-

rated in Fig. 4. One should note that the notion of centers is adopted

t this stage for convenience, as centers allow us to establish a corre-

pondence between territories in an efficient way.

Once that correspondence between territories has been estab-

ished it is possible to perform moves from one solution XS to an-

ther XT. As a consequence, in order to arrive at solution XT starting
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from XS, every node in XS such that t(XS, i)) �= t(XT , i) must be moved

to its associated territory in XT. We define a PR move, movePR(XS, XT,

i), as a function that moves or reassigns a node i from territory t(XS,

i) to territory t(XT, i). The move is valid as long as t(XS, i) �= t(XT , i)
and the resulting p-partition remains connected, that is, if and only

if Xt(XT ,i) ∪ {i} is connected and Xt(XS,i)\{i} remains connected. One

should note that moves are always made between boundary nodes as

it is not possible to exchange a non-boundary node from one territory

to another territory in a single move because loss of connectivity.

Intermediate solutions between XS and XT are generated by mak-

ing moves from XS to XT and updating the solution XS accordingly.

Clearly, the order in which nodes i are selected may give rise to dif-

ferent trajectories between XS and XT. In this work we chose nodes i

in lexicographical order, we also tried a random node selection ap-

proach although no difference in performance was obtained. After

an intermediate solution is created it is evaluated using formula (8).

The generation-evaluating process is repeated for every node with

(XS, i) �= t(XT , i) and the process stops when t(XS, i) = t(XT , i) for

all i ∈ V. Thus, the PR procedure receives as input a pair of solutions

XS and XT, generates and evaluates all of the intermediate solutions

from XS to XT and the best intermediate solution XR is returned as

output. In the following we denote with PR(XS, XT) the application of

PR starting at solution XS and finishing at solution XT.

Procedure 3 grasp_pr_static (imax).

Input: imax: number of global iterations;

Output: Xbest : A p-partition of V ;

for all ( i ∈ {1, . . . , b} ) do

X ← grasp_construction();

Bi ← local_search( X );

end for

Sort B from best to worst;

for all ( iter = 1, . . . , imax ) do

XS ← grasp_construction();

XS ← local_search( XS );

if ( (ψ(XS) < ψ(B1)) or (ψ(XS) < ψ(Bb) and dsol
μ (XS, B) > θ ) ) then

Ej ← closest solution to XS in B with ψ(XS) < ψ(Bj);

Ej ← XS;

Update B;

end if

end for

Xbest ← B1;

for all ( i ∈ {1, . . . , b − 1} ) do

for all ( j ∈ {i + 1, . . . , b} ) do

Apply PR(Bi, Bj) and PR(Bj, Bi) and let XS ← best solution found;

XS ← local_search( XS );

if ( ψ(XS) < ψ(Xbest) ) then

Xbest ← XS;

end if

end for

end for

return Xbest ;

Procedures 3 and 4 present the static and dynamic variants of

PR implemented in GPR_CTDP, respectively. Both static and dynamic

variants maintain a set of b elite solutions B = {B1, . . . , Bb}. B is ini-

tialized by running the construction and local search procedures for

b times. Solutions in B are always kept sorted in ascending order of

their objective function value estimated with Eq. (8).

4.2.1. Static GPR_CTDP

In the static variant, PR is performed at the end of imax iterations

of a typical GRASP. In each iteration of the GRASP a solution is con-

structed and improved with local search, XS. This solution is com-

pared with the solutions in B. If XS is better than the best solution in

B (i.e., B1) or if XS is better than the worst solution in B (i.e., Bb) and is

at a distance larger than a given threshold θ from solutions in B, then

the most similar solution to XS in B is replaced by XS. Solutions in B

are then sorted from best to worst. After imax iterations the static PR

starts. Every path between solutions in B is evaluated and the best so-
ution is returned. The distance between XS and solutions in B is esti-

ated as dsol
μ (XS, B) = 1

b

∑b
i=1 g(XS, Bi), where g(XS, Bi) is the fraction

f nodes in XS and Bi that are assigned to different territories; that

s, dsol
μ (XS, B) is the average number of nodes assigned to different

erritories in XS and Bi. Alternative measures of similarity/distance

etween territory designs have been described before, see for exam-

le the work by Tavares Pereira, Figueira, Mousseau, and Roy (2009).

owever, such measures do not take advantage of the information we

ave available when solving the AP. That is, those measures do not

now the correspondence between territories beforehand. Besides,

istance measures described in Tavares Pereira et al. (2009) are de-

ned in terms of a single attribute and it is not clear how to extend

he similarity measure to incorporate information of more than one

ttribute (e.g., the three activities considered in this work). For that

easons we adopted a simple, yet very informative, measure for com-

uting the distance between territory designs. The pseudocode of the

tatic variant of PR is shown in Procedure 3. θ ∈ [0, 1] is a scalar that

s set empirically.

.2.2. Dynamic GPR_CTDP

The dynamic PR variant differs from the static one in that in each

teration of the GRASP the solution XS is compared to a randomly se-

ected solution from B, say B′. The intermediate solutions between XS

nd B′ are evaluated, and the best solution found in the path is de-

oted XR. Then if XR is better than B1 or if XR is better than Bb and it

s at a distance of at most θ from the solutions in B, then the closest

olution in B to XR is replaced with XR. Then solutions in B are sorted

rom best to worst. After imax iterations the best solution, namely B1,

s returned. The pseudocode is shown in Procedure 4.

rocedure 4 grasp_pr_dynamic (imax).

nput: imax : number of global iterations;

utput: Xbest ; A p-partition of V ;

for all ( i = {1, . . . , b} ) do

XS ← grasp_construction();

Bi ← local_search( XS );

end for

Sort B in ascending order;

for all ( iter = 1, . . . , imax ) do

XS ← grasp_construction();

XS ← local_search( XS );

Randomly select B′ from B;

Apply PR(XS, B′) and PR(B′, XS) and let XR ← best solution found;

if ( (ψ(XR) < ψ(B1)) or (ψ(XR) < ψ(Bb) and dsol
μ (XR, B) > θ ) ) then

Bj ← closest solution to XR in B with ψ(XR) < ψ(Bj);

Bj ← XR;

Update B;

end if

end for

return Xbest ← B1;

A number of parameters are associated with GPR_CTDP in both

ariants, namely δ the fraction of nodes assigned with a distance cri-

erion, k the number of neighbors that are considered for building

territory, λ the tradeoff parameter of the objective function, α the

RASP quality parameter for the RCL, limit_evals the maximum num-

er of evaluations for the local search, b the number of solutions in

he elite set B and θ the distance threshold in PR. In this work we

ave fixed all of these parameters based on preliminary experimenta-

ion. The next section reports experimental results with the proposed

PR_CTDP.

. Computational experiments

This section reports experimental results obtained with

PR_CTDP. The proposed method was implemented in MatlabR.

he code and data sets are publicly available for research purposes

rom the authors upon request. All of the experiments were run in a
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Table 1

Summary of values used for the algorithmic parameters of GPR_CTDP.

Parameter Value Description

δ 0.5 Fraction of nodes assigned with a distance criterion

k 3 Number of neighbors that are considered for growing a territory

λ 0.7 Weight parameter in the meritfunction

α 0.3 RCL quality parameter

limit_evals 1000 The maximum number of fitness function evaluations in the local search

b 20 The number of solutions in the elite set E

θ 0.6 The distance threshold in PR

imax 500 Number of global iterations for GPR_CTDP
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Fig. 5. Performance of the construction and local search mechanisms for instances in

the DT data set. We show the values of F(S) (left y-axis) and G(S) (right y-axis).
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4-bit workstation with a Corei7 processor at 3.4 GHz and 8 GB in

AM.

.1. Experimental setting

For the experiments we used the data base from Ríos-Mercado

nd Fernández (2009). These are randomly generated instances based

n real-world data. Data sets DS and DT are considered for experi-

entation. The former generate the BU weights from a uniform dis-

ribution and the latter uses a triangular distribution. Data set DT

ore closely resembles real-world instances. These data sets are fully

escribed in Ríos-Mercado and Fernández (2009). For each of DS and

T data sets there are 20 different instances of size n = 500 and

p = 10.

For all of the instances in both DS and DT data sets we use a toler-

nce level τ a = 0.05, a ∈ A. Recall that τ a measures the allowable rel-

tive deviation from the target average size μa for activity a. Hence, a

alue of τ a = 0.05 implies that instances are tightly constrained in all

ctivities and therefore the problem is more difficult to solve than in-

tances that use a larger value of τ a. In previous work (Ríos-Mercado

Fernández, 2009), experiments have been reported with other val-

es for τ a ∈ [0.05, 0.30]. Here we focus on the most difficult instances.

Throughout the evaluation, the GRASP is run with imax = 500.

ased on preliminary experimentation for fine-tuning the algorith-

ic parameters for GPR_CTDP, we will use the values reported in

able 1. Showing the fine-tuning of these parameters is out of the

cope of this paper.

In the following sections we report the obtained experimental re-

ults. We have divided experimental results in three sections that aim

t assessing different aspects of the GPR_CTDP.

.2. Assessing the construction and local search procedures within a

RASP framework

This section describes results of experiments designed to evaluate

he effect of the proposed construction and local search procedures.

o this end we apply the new construction phase within a GRASP

ramework, that is, no PR phase is applied in this experiment. First,

e apply the GRASP with construction phase only and then we apply

he complete GRASP with both construction and local search phases.

or each of these, we tested the two different data sets. Figs. 5 and

show the performance of the construction and local search proce-

ures for DT and DS data sets, respectively. In each figure we plot the

alues of the objective, F(S), and infeasibility, G(S), for each instance

nd for each mechanism. As expected, from these figures we can see

hat local search improves significantly the construction procedure,

n terms of both infeasibility and dispersion. For both data sets, lo-

al search (triangle marker) obtains feasible solutions (i.e., G(S) = 0)

or most of the instances starting from the highly infeasible solu-

ions generated by the construction mechanism (diamond marker).

esides, there are considerable improvements in terms of F(S) for all

f the instances in the DT data set, see Fig. 5. Lower improvements

n terms of dispersion are observed for the DS data set, see Fig. 6, al-

hough local search always obtained returned better solutions. It is
xpected that the PR mechanisms further improve the dispersion of

olutions obtained with my local search.

Fig. 7 shows the search profile for a particular instance of the DT

ata set, that is, we show how the quality of solutions, as measured

y the weighted merit function ψ(X), improves as a function of time.

e plot the average value, across 500 iterations of GRASP, of Expres-

ion (7) during the local search process for a specific instance in DT.

s before, It can be seen that the local search procedure improves

onsiderably the quality of solutions generated with the construction

rocedure, where the most important improvements are obtained

t the first stages of the local search. Please note that we stop local

earch when either no further improvement is possible or the maxi-

um number of evaluations is performed (in our case 1000 evalua-

ions); in practice, the maximum number of evaluations was barely

sed as stopping criterion for the local search procedure.

Table 2 summarizes the performance of the construction and lo-

al search procedures across all instances of both DT and DS data sets.
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Table 2

Evaluation of the construction and local search procedures of GPR_CTDP.

Data set DT DS

Measure/mechanism Construction Local search Construction Local search

RDB Best 5.81% 0.00% 0.00% 0.00%

Average 34.12% 1.51% 20.91% 14.51%

Worst 81.45% 6.04% 58.28 56.76%

G(S) Best 0.00E + 00 0.00E + 00 2.60E − 01 0.00E + 00

Average 2.37E − 02 0.00E + 00 3.61E − 01 3.01E − 04

Worst 7.06E − 02 0.00E + 00 5.24E − 01 3.55E − 03
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Fig. 7. Quality of solutions as a function of local search steps (time) for a selected in-

stance.
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Fig. 8. Quality of solutions before and after applying PR for a selected instance. Top:

dynamic PR. Bottom: static PR.
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For the dispersion term F(S), we show the relative deviation between

the solution obtained with each procedure and the best known solu-

tion for each instance RDB = (F(S) − F(Sbest)/F(Sbest). The column la-

beled “local search” indicates that both construction and local search

phases are applied. From this table we can see that the average of

the sum of relative infeasibilities is maintained low in the construc-

tion procedure for both data sets. This result shows that the proposed

procedure is able to obtain acceptable solutions in terms of the degree

of satisfaction of the balance constraints despite the fact part of the

construction procedure is based on a purely distance-based criterion.

After applying local search to the constructed solutions, the dis-

persion measure F(S) is improved as it shows a reduction in the rel-

ative deviation with respect to the best dispersion value. In the case

of the DT data set the solutions obtained with local search are very

close to the best ones in terms of dispersion (average deviation of

1.51%), while for DU there is much more room for improvement (av-

erage deviation of 14.51%). For the DT data set the objective function

is improved in average by 32.61%, while for the DS data set the im-

provement is of 6.4%. These are rather important differences that ev-

idence the effectiveness of the proposed local search mechanism. It

is very important to emphasize that dispersion is improved by also

considerably reducing G(S).

5.3. GRASP vs. GPR_CTDP

This section reports experimental results on the improvements

of the PR strategies over the straight GRASP implementation de-

scribed in Section 4.1. Table 3 shows the performance of GPR_CTDP

under both static (GPR-ST column) and dynamic (GPR-DY column) PR

strategies for DT and DS data sets. In the table, we compare the per-

formance of GPR_CTDP when using PR and when only GRASP without

PR is adopted. We show the relative deviation between the best so-

lution obtained with each method and the best known solution for

each instance.

As we can see, for the DT data set, the improvements obtained

with PR over local search are small yet non-negligible. We believe this

result can be due to the fact that we are approaching to the global op-

timum for this data set and since the local search procedure provides
ery competitive solutions by itself the improvements due to PR are

ather small. However, it is important to emphasize that all of the so-

utions found with GRASP and GPR_CTDP are feasible for this data set.

or this data set the static PR strategy outperformed the dynamic one

y less than 1% in terms of the objective function. For the DS data set

he improvements due to PR are larger. GPR_CTDP with static PR out-

erforms the results of local search by an average of ≈ 13% in terms

f the objective function, whereas the dynamic strategy outperforms

ocal search by less than 1%. The static variant of PR achieve impor-

ant improvements in terms of the dispersion objective (F(S)), while

lso reducing the infeasibility term.

Fig. 8 shows the difference in performance gained by applying PR

fter local search for a specific instance from the DT data set (for

hich smaller differences were obtained). Each point in the x-axis

orresponds to one round of PR. For dynamic PR there are 500 rounds

f PR because it is applied every iteration, while for static PR there are

ewer rounds because it is applied only for the elite set. It can be seen

rom these plots that even though differences reported in Table 3 are

mall, PR improves the local search solution in every case.

Finally, it is important to point out that even in the case when

RASP is allowed to run by itself for an amount of time equal to the

otal amount of time employed by GPR_CTDP, the results reported by

he later are still better. This is due to the fact that the GRASP seems
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Table 3

Evaluation of GPR_CTDP with static and dynamic PR.

Data set DT DS

Measure GRASP GPR-ST GPR-DY GRASP GPR-ST GPR-DY

RDB Best 0% 0% 0% 0% 0% 0%

Average 1.51% 0.51% 1.27% 14.51% 0.76% 13.92%

Worst 6.04% 3.09% 3.91% 56.76% 11.44% 56.76%

G(S) Best 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00

Average 0.00E + 00 0.00E + 00 0.00E + 00 3.01E − 04 2.53E − 04 2.84E − 04

Worst 0.00E + 00 0.00E + 00 0.00E + 00 3.55E − 03 5.07E − 04 3.55E − 03
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Fig. 9. Solutions obtained by the construction, local search and static PR procedures for a particular instance of the DT data set.
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Fig. 10. Solutions obtained by the construction, local search and dynamic PR procedures for a particular instance of the DT data set.
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o converge within the first iterations, thus a better solution is hardly

ound by GRASP afterwards.

Figs. 9 and 10 show the territories obtained with the construc-

ion, local search, and PR GPR_CTDP procedures for a particular in-

tance of the DT data set. Fig. 9 shows the solution from a run of

he static PR GPR_CTDP and Fig. 9 shows the corresponding solu-

ion for the dynamic PR GPR_CTDP. These figures illustrate the ad-

antages of GPR_CTDP over the construction and local search mecha-

isms. Territories generated after the construction procedure present

nfeasibilities. The local search process eliminates infeasibilities and

educes the dispersion objective. However, the dispersion is further

inimized with both PR variants. Visually, it can be seen that territo-

ies generated with local search (center plots) are more disperse than

hose generated with GPR_CTDP (rightmost plots). For this particular

nstance, a better solution was obtained with the static version of PR,

hich agrees with results presented in this section.

.4. Static vs. dynamic path relinking

This section elaborates on the difference in performance between

he static and dynamic PR variants of GPR_CTDP. From Table 3 we can

ee that the improvements of static and dynamic GPR_CTDP over lo-
al search are of 1% and 0.24% for the DT data set and of 13.75% and

.59% for the DS data set (in terms of the objective function). Thus,

espite the fact both strategies resulted effective, the use of the static

ne is advantageous. We think this can be due to the fact that static

PR_CTDP explores all of the paths between elite solutions at the

nd of the search process. Hence a global picture of the search pro-

ess is considered during the execution of static GPR_CTDP. Dynamic

PR_CTDP on the other hand, explores the paths between every so-

ution processed by local search and a random solution from the elite

et. Since it is not guaranteed that PR is performed over two compet-

tive solutions, it is less likely that an effective solution can be found

fter exploring the paths.

Fig. 11 shows the relative deviation of the solutions found with

ach tested method and the best known solution for each instance

or DT data set. This figure give us more insight into the performance

f the different methods across the instances, it is rather clear that the

tatic PR strategy obtained the best solutions for most of the instances

those instances for which the relative deviation is zero), followed by

he dynamic PR approach.

Table 4 reports the processing time for each variant of GPR_CTDP

nd for each data set. In general terms a new territory design can

e obtained with either variant of GPR_CTDP in a few hours. For
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Table 4

CPU time (min) comparison for static and dynamic

GPR_CTDP.

DT DS

GPR-ST GPR-DY GPR-ST GPR-DY

Best 124.84 119.93 179.74 179.37

Average 136.25 133.70 204.42 200.24

Worst 152.96 150.34 240.30 227.46
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instance, in average, it took about 2.2 h for DT and 3.4 h for DU

to obtain a solution; whereas, decisions involving territory designs

(e.g., re-assignments or modifications) are taken at periods spaced by

no less than a month (3–4 months in average). Therefore, the pro-

posed solution and implementation satisfies loosely the demands of

industry.

One final comment, it was observed that, in the GPR_CTDP

method, around 80% of the time is spend in the GRASP and 20% doing

the path relinking. Therefore, we have empirically observed that this

additional amount of effort pays off significantly.

6. Conclusions

We have introduced a new model in commercial territory design.

The new model makes use of a diameter-based dispersion function

instead of the traditional center-based functions.

We have described a GRASP with path relinking (GPR_CTDP) for

this CTDP. The problem, motivated by a real-world application, con-

sists of grouping commercial units into geographic territories sub-

ject to dispersion, connectivity and balance constraints. A novel

construction procedure was developed and two variants of PR were

explored in GPR_CTDP, namely, static and dynamic PR. The compo-

nents of GPR_CTDP were evaluated and compared extensively in in-

stances that are known to be very challenging from previous work.

Experimental results show that the proposed construction proce-

dure is able to construct very competitive solutions, mainly in terms

of the dispersion criterion. The local search of the GPR_CTDP im-

proves solutions in terms of both dispersion and balance require-

ments. Both versions of PR improve the performance of the appli-

cation of the construction and local search mechanisms, confirming

previous work on the combination of GRASP and PR. In particular we

found that with the static PR variant better solutions can be obtained

for the TDP. This can be due to the fact that the PR process is applied

over elite instances, which increases the chances of finding a better
olution. In general terms the processing time of both PR variants lies

n reasonable ranges for the application.

We have identified several future work directions in the context

f GPR_CTDP. In particular we would like to explore other variants

f PR that are known to be very effective, for example, evolution-

ry PR. Further, we are interested in the development of an adap-

ive filtering step that allows us to identify pairs of solutions that

an be potentially improved by applying PR. This is in addition to

he rules used for updating the set of elite solutions. We think that

uch a filtering strategy will have a very positive impact in the effi-

iency of GPR_CTDP. Since we found evidence that maintaining a set

f elite solutions can be beneficial for TDP, we would like to explore

he use of other “population-based” metaheuristics such as scatter

earch. Another promising and direct future work direction is that of

mproving the processing time of our implementation. Specifically,

e would like to explore distributed and parallel implementations of

PR_CTDP.

It is important to note that the method developed in this work

an also be extended and applied to other districting problems under

alancing and connectivity constraints. The presence of the connec-

ivity constraints make the path relinking process more challenging.

or instance, path relinking has been applied in a different manner

n related partitioning problems such as capacitated clustering (Deng

Bard, 2011). In this particular work, we have successfully exploited

he problem structure by solving an associated Assignment Problem

hose solution will guide the relinking process in a more intelligent

ashion. To the best of our knowledge this PR idea is novel and worth-

hile for further exploration in other districting or clustering prob-

ems under connectivity constraints.

An idea worthwhile exploring could be the definition of differ-

nt neighborhood topologies. In the present work, and most of the

iterature, the typical move of reassigning a BU to a different terri-

ory has been considered. However, a swap neighborhood where two

Us from different territories are swapped defines an entire differ-

nt topology. Furthermore, advanced search procedures such as iter-

ted greedy local search (IGLS) could also deliver solutions of better

uality. IGLS is a local search mechanism that iteratively destroys and

econstructs solutions generating an entirely different search path.

or instance, in our particular problem, it is clear that the territory

aving the worst objective function value (diameter) is a bottleneck

n the sense that the overall objective function cannot be improved

nless the diameter of this territory is improved. Therefore by care-

ully selecting this territory and adequate neighbor territories, one

an unassign all basic units associated to these territories and make a

etter reconstruction that would give a lower diameter value.

Another idea is as follows. During the search process, our heuris-

ic keeps feasibility once it is attained. However, there are also some

tate-of-the-art metaheuristic components such as strategic oscilla-

ion that may be worthy of future investigation. Strategic oscillation is

concept introduced by Glover and Jao (2011) that allows the search

rocess to examine infeasible solutions hoping that would yield solu-

ions of better quality once feasibility is recovered. This concept has

roven very successful in other combinatorial optimization problems.

A natural area for future work is the development of lower bound-

ng schemes. While it is clear that the inherent problem complexity

ake it very difficult to find optimal solutions, one can attempt to

nd at least lower bounds on the objective function value that would

llow to give an estimate on the quality of the solutions delivered by

he heuristics. Finding good lower bounds is a very challenging area

f research.

Finally, a natural extension of this work is to consider stochastic

ptimization models. That is, in most of these models in the district-

ng literature, deterministic models are often tackled. However, if one

ssumes that some parameters such as product demand, for instance,

ay be a random variable, the resulting model is an integer stochas-

ic optimization problem which is of course harder to solve. However,
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he ideas developed in this work can be useful to generate insight and

elp in the development of efficient solution algorithms to such hard
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