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The capacitated vertex p-center problem is a location problem that consists of placing p facilities and
assigning customers to each of these facilities so as to minimize the largest distance between any
customer and its assigned facility, subject to demand capacity constraints for each facility. In this work, a
metaheuristic for this location problem that integrates several components such as greedy randomized
construction with adaptive probabilistic sampling and iterated greedy local search with variable
neighborhood descent is presented. Empirical evidence over a widely used set of benchmark data sets
on location literature reveals the positive impact of each of the developed components. Furthermore, it is
found empirically that the proposed heuristic outperforms the best existing heuristic for this problem in

terms of solution quality, running time, and reliability on finding feasible solutions for hard instances.
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1. Introduction

In this paper, the capacitated vertex p-center problem (CpCP) is
addressed. This is a location problem that can be defined as follows.
Given a set of nodes V representing customers and potential facility
location points, where each node j € V has a demand w; and a facility
capacity s;, a distance d; between each pair of nodes i,jeV, and a
given number p of desired facilities, we must decide where to locate
p facilities and how to assign all the customers to these facilities so as
to minimize the largest distance between any customer and its
assigned facility subject to demand capacity constraints. The CpCP is
NP-hard [1]. Several practical applications can be modeled as a CpCP,
particularly problems that arise on emergency situations such as
providing emergency medical service by locating emergency facilities
or ambulances, or the location of fire stations.

Much has been devoted to the uncapacitated version of this pro-
blem. Elloumi et al. [2] provide an extensive review of the literature.
However, the research on the CpCP has been more limited. The most
significant contributions from the exact optimization perspective are
due to Ozsoy and Pinar [3] and Albareda-Sambola et al. [4]. In the
former, the authors presented an exact method based on solving a
series of set covering problems using an off-the-shelf mixed-integer
linear programming (MILP) solver while carrying out an iterative
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search over the coverage distances. In the latter, the authors proposed
an exact method based on Lagrangian relaxation and a covering
reformulation.

To the best of our knowledge, the most significant heuristic
method for the CpCP is due to Scaparra et al. [5]. In their work, the
authors developed a heuristic based on large-scale local search
with a multiexchange neighborhood represented by an improved
graph, exploiting principles from network optimization theory.
They address instances of up to 402 nodes and 40 facilities.

The main purpose of our work is to integrate several of the adv-
anced heuristic components that have been very successful in other
combinatorial optimization problems into a metaheuristic algorithm
for the CpCP. To this end, a greedy construction heuristic with ada-
ptive probabilistic sampling is developed. In addition, this is enha-
nced by a local search phase using iterated greedy local search with
variable neighborhood descent. In each of these components, the
particular problem structure is adequately exploited. Our empiri-
cal work indicates the positive impact of each of these components
when integrated into the metaheuristicc. When compared to the
existing work, the proposed heuristic provides solutions of better
quality than those found by the other heuristic under similar, and in
many cases significantly less, computational effort. Furthermore,
when compared to existing work, our heuristic is found more robust
on finding feasible solutions for the hardest data sets.

The rest of the paper is organized as follows. The combinatorial
optimization model for the CpCP is given in Section 2. In Section 3, a
detailed description of the proposed algorithm is presented. Section 4
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shows the empirical results, providing a description of the benchmark
data sets, parameter fine-tuning, comparison among methods, and
component analysis of the proposed heuristic. Concluding rem-
arks are given in Section 5.

2. Problem formulation

Let U={uy,...,un} be the set of potential locations for the p
facilities and V = {vq,...,v,} be the set of customers, this paper
assumes the special case when U=V. Let d; denote the integer
distance between nodes i and j. Each je V has an integer demand
w; and an integer capacity s; A p-partition of V is given by X =
{X1,....Xp} and K={1,...,p}, where X, c V is a subset of V. Each
subset X}, is formed by a subset of nodes such that [ Ji . xXy =V and
Xy NXg=0 for all k,qeK,k+#q. The set of centers is given by
P ={c(1),...,c(p)}, where c(k) is the center for subset X, i.e., the node
that hosts the facility serving the customers in X;. The problem can
be represented as

min - maxf(Xy), M

where 7 is the collection of all p-partitions of V, and its objective
function is given by f(Xj) = max;. x, {d;x}. The center c(k) is given
by

c(k) = arg irni)(n{J[ne)l(x{dij: > wy ss,}}. 2)
e Xy e Xy

J e X

If for a given X there is not any i € X, such that Yiex, Wi <si then
fXy) = oco. Here, computing c(k) comes basically from solving a
1-center problem which can be done rather quickly in O(n). We
define by #(j) the index ke K where customer j belongs to, i.e.,
¢(j) =k if and only if j € X,.

3. Description of the heuristic

In recent years, an important trend in the metaheuristic field is
that of integrating different components resulting in successful
hybrid methods that attempt to better exploit the specific problem
structure. As a direct consequence of this, sometimes it is not clear
how to name a specific heuristic as it uses ideas from several meth-
ods. In this regard, the proposed solution method uses an Iterated
Greedy Local Search (IGLS) procedure as its guiding framework. In
its construction phase, a greedy mechanism with adaptive biased
sampling is employed. Then IGLS with Variable Neighborhood Des-
cent (VND) is applied in the improvement phase.

IGLS is a technique originally proposed by Ruiz and Stiitzle [6]
that extends the Iterated Local Search (ILS) heuristic [7]. IGLS ite-
ratively applies phases of destruction, reconstruction, and local sea-
rch to a given input solution. In order to escape from a local opti-
mum and to explore other regions in the solution space, IGLS
applies a perturbation procedure to generate new starting points for
the local search by changing the current solution. The destruction/
reconstruction or perturbation consists of removing some elements
of the current solution under a specific criterion, followed by a
greedy algorithm to obtain a new solution. After a solution has pas-
sed through a perturbation phase, a local search procedure is app-
lied. The last step is to decide, based on an improvement criterion, if
the solution obtained after the local search should replace the
incumbent solution for the next iteration. The IGLS algorithm iter-
ates over these steps until some stopping criterion is met. An adva-
ntage of IGLS is that it allows to diversify and improve along the
search without the need of employing complex memory structures.
Its simplicity makes it applicable to several combinatorial optimiza-
tion problems. For instance, Ruiz and Stiitzle [6,8], Fanjul-Peyro and

D.R. Quevedo-Orozco, R.Z. Rios-Mercado / Computers & Operations Research 62 (2015) 133-144

Ruiz [9] and Urlings et al. [10] provide state-of-the-art results for
different scheduling problems.

VND is an iterative improvement algorithm where t neighbor-
hoods, which are typically ordered according to increasing size, are
used. The algorithm starts with the first neighborhood and per-
forms iterative improvement steps until local optimality is reac-
hed. When no further improvement is found for the h-th neigh-
borhood and h+1 <t, VND continues the search in the (h+1)-th
neighborhood. If an improvement is found, the search process
starts again at the first neighborhood. When h+1 >t then the
search process ends and the procedure returns the final solution,
which is a local optimum with respect to all ¢t neighborhoods. It
has been shown that VND can considerably improve the perfor-
mance of iterative improvement algorithms with respect to both
the solution quality of the final solution and the time required for
finding high-quality solutions compared to using standard itera-
tive improvement in large neighborhoods [11].

This idea of hybridizing ILS with VND has been successfully
used in the past for other combinatorial optimization problems.
For instance, Subramanian et al. [12] used a parallel version for the
VRP with simultaneous pickup and delivery. Martins et al. [13]
proposed a method for solving a routing and wavelength assign-
ment problem for optical networks.

The proposed approach is depicted in Algorithm 1. An initial
solution is obtained (Steps 2-3). The local search (Steps 6-7) is
done as long as the solution keeps improving. Let B(X) be the set of
bottleneck subsets in X, i.e.,, BX)={keK : f(X,) =f(X)} and J(X)
contains the demand nodes with maximum distance from the
active center node in each subset X, i.e., 7(X) = {j e Xy : djcqr =
fX), ke B(X)}. To compare two solutions X and X', we use an
effective improvement criterion proposed in [5] that includes the
reduction of bottleneck elements, as follows. It is stated that

fXH<fX) or
fX)=fX), BX)<BX),JX)cTX).
3

X' is better than X < {

Algorithm 1. Pseudo-code of IGLS that takes as input: a set of
nodes V, number p of desired facilities, a value a €[0.0, 1.0] of des-
truction of the solution during the perturbation step, and the max-
imum number of iterations rmax.

1: procedure IGLS (V,p, &, I'max)
2: X'« ConstructioN(V,p)
3: X <VNDX)

4: XX

5: while . >0 do
6

7

8

> Construction

> Improvement
X'« PERTURBATION(X, )

X' < VND(X)
if X' is better than X then
9: XX
10: else
11: X'« SHAKEX")
12: end if
13: Tmax < 'max — 1

14: end while
15:  return X
16: end procedure

This criterion is met if X' decreases the objective function value
or if X' reduces the number of bottleneck customers while not
worsening the total cost, without creating new bottleneck subsets
and new bottleneck customers. The incumbent solution X is updated
if a better feasible solution is found according to the criterion (3);
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otherwise, a shake (Step 11) of the solution X' is applied. The
approach stops when the maximum number of iterations (denoted
by rmax) is met. Each of the four main components (e.g., CONSTRUC-
TioN(), PerTURBATION(), VND(), and SHakg()) of Algorithm 1 is desc-
ribed next.

3.1. Construction

The construction phase consists of two stages: (a) center loca-
tion and (b) customer allocation. In the former, we used a greedy
randomized strategy with adaptive probabilistic selection, which
diversifies the set of potential centers. In the latter, a deterministic
greedy approach based on both a distance criterion and node cap-
acity is performed.

3.1.1. Stage (a): Center location

The goal here is to choose an adequate set of p centers or seed
nodes. The choice of these centers is made through a greedy ran-
domized construction procedure, taking into account the distance
factors and the capacity of each node j e V. The location phase sta-
rts by choosing the first center i* randomly. Then, we iteratively
choose the next center seeking a node whose greedy function
value, given by

7() = deﬁp 4)

is relatively large. The motivation of this function is to try to obtain
centers that are as disperse as possible, but also to favor the choice
of centers with large capacity such that we can assign more cus-
tomers to it in the allocation phase. Within a greedy randomized
method this is done as follows. Let P be a partial set of chosen
centers. Then, for each j e V \ P we compute its greedy function (4)
value. Note that when the capacity of j and the distance between i*
and j increases, the value of the greedy function for j increases,
making it more attractive to be selected as the next center because
this node is disperse regarding the set P and its capacity is large;
on the other hand, if distance or capacity values get smaller then
the value of this function is decreased and j is not attractive to be a
center. The probability z(j) of selecting the next elementje V \ P is
computed as
)

e V\Py(j/)
By using this probability measure, nodes with better greedy
function evaluation have better chance of being chosen. Note also
that the role of the z(j)'s is invariant to the scale of s and d in (4),
thus there is no need to normalize these factors in (4). In a
preliminary version of this work [14], the RCL was restricted by the
usual GRASP quality threshold parameter; however, we found the
new less restrictive approach much better.

z(j) ©)]

3.1.2. Stage (b): Customer allocation

Once the centers are fixed, the second stage consists of all-
ocating the customers to these centers. This stage is done in a det-
erministic greedy fashion, because some preliminary tests show
that deterministic choices outperform randomizing strategies. The
assignments are defined by the remaining nodes je V \ P. To this
end we define a greedy function that measures the cost of ass-
igning a customer j to a center k located in c(k) as

) dicco if w; <r(k),
dG. =1 d (6)
wj—r(k) if wj>r(k);

where d =max;j.v{d;j}+1 is a normalization factor and r(k)=
Scky — 2_i e x, Wi 18 the residual capacity for the set whose center k is
located in (k). Note that the term dj,/d is a fraction less than one

and r(k)—wj; is an integer greater or equal to one. Thus, the aim is
to penalize the constraint violation highly and to consider the
distance factor only when the constraint is met. Afterwards, each
node j is assigned to a center k* that minimizes function (6), that
is, Xj= <X+ U {j}, where k* = arg min . x¢(j, k). Note that because
the way (6) is defined there is no way a node j is assigned to a
center with no sufficient capacity while existing other centers with
sufficient capacity. Finally, once the assignment is done, the centers
for the entire partition are updated using (2). Algorithm 2 depicts
the construction method.

Algorithm 2. Pseudo-code of construction step that takes as
input: a set of nodes V and a number p of desired facilities.

1: procedure ConstructioN(V, p)
2: P<o > Stage (a)
3. Choose i* € V randomly
4 PePuU (i)
5:  Update y(j) and z(j),je V\ P
6: while |P| <p do
7 Choose i* € V \ P randomly using the probability z(j)
8: PP U {i*}

9: Update y(j) and z(j),je V \ P
10:  end while

11: X<g@ > Stage (b)
12: foralljeV\Pdo

13: k* —arg ming < (. k)

141 XpeXpe U Q)

15: Update c(k™)

16: end for

17: return X

18: end procedure

It should be noted that this phase does not guarantee con-
struction of a feasible solution because during the allocation stage
the capacity constraints may be violated for some customers.
However, the local search phase successfully handles this issue
as it is empirically shown in Section 4.

3.2. Local search

To attempt to improve the solution, a local search phase that
uses VND within an IGLS framework is performed (Steps 5-14 in
Algorithm 1). In this phase a perturbation consisting of unassign-
ing and reassigning customers to centers according to the IGLS
idea is done first (Step 6). Then, this is followed by VND (Step 7),
where two different neighborhood structures are used. Finally, if
the current solution is no better than the incumbent, a more
aggressive destruction/reconstruction procedure is performed
(Step 11). Each of these components is explained in detail next.

3.2.1. Perturbation

This method takes a solution as an input and applies destruc-
tion and reconstruction steps. The objective of this procedure is to
reduce bottleneck elements using specific criteria of node unas-
signment for each subset (Steps 3-10). In this specific case, for a
chosen X, the destruction step is done by unassigning the a% of
nodes located in X, with high values of the probability function
defined by

dicqky

() = )

25 e xitedoy ey
The choice of this function is motivated by the fact that the nodes
farther from the center are the ones affecting more the dispersion
function value.
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Algorithm 3. Pseudo-code of perturbation step that takes as
input: a solution X and a value a€[0.0,1.0] that represent the
percent of nodes to be disconnected from a solution.

: procedure PERTURBATION(X, @)
Weo
for all ke K do
Q <X\ {c(k)}
Update p(j),j e Q
while ¥ < « do
Choose j e Q randomly using probability p(j)
W<W U {j)
end while
10: end for
11:  Sort W from worst to best djc.j € W
12: X<X\W
13: forallj e W do
14: k* —arg ming . (', k)
15: Xk* (_Xk* @] {]/}
16: end for
17:  Update c(k),ke K
18: return X
19: end procedure

> Destruction

O o0y O Ul .hWN =

> Reconstruction

The reconstruction step (Steps 13-16) reassigns each unassigned
node to a center k* that minimizes function (6). A priority assignment
is given to the bottleneck nodes, i.e., nodes whose previous assignment
matched the value of the objective function value; this is achieved
through a sort on the set of unassigned nodes from worst to best
previous distance (Step 11). Finally, once the reconstruction is done,
the centers for the entire partition are updated (Step 17) using (2). The
pseudo-code of this perturbation method is shown in Algorithm 3.

It is important to point out that an improvement in the objective
function value is not necessarily achieved by the perturbation
method. This is due to the fact that there might be some nodes that
can worsen the objective value of the current solution during the
reconstruction step. However; this is not precisely bad news because
it allows more diversification to a given solution which can later be
improved by VND in the following step. As it is usual in IGLS, the
value of the destruction parameter « plays an important role in the
quality of the solutions found by the method. Appropriate values are
empirically investigated and fine-tuned for a large number of
instances in the benchmark data sets as shown in Section 4.2.

32.2. VND

Our VND implementation, depicted in Algorithm 4, employs
two different neighborhood structures denoted by A'; and N>.

For each i e 7(X) we applied the best move strategy of the h-th
neighborhood (Steps 4-6). For each of the two neighborhoods, the
potential move takes into account both distance and capacity
factors. Given the nature of the objective function, it makes perfect
sense to consider only a subset of promising moves, not the entire
neighborhood, i.e., we only consider moves where the distance
between i to potential target subset c(k) is strictly less than f{X)
and the capacity is not exceeded in any center involved in the
movement. These restrictions rule out infeasible movements, red-
ucing the size of the neighborhood to be explored, and increas-
ing the performance of the procedure. Therefore, a best improving
move strategy is adopted through the search. Once the move is
made, the centers for the entire partition are updated using (2).
Finally, the incumbent solution X is updated if the solution X’ is best
according to criterion (3). Each neighborhood is described next.

(N1) Reinsertion: This neighborhood considers moves where a node
ie J(X) (currently assigned to set X) is reassigned to set X,
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with k # g, i.e., given a p-partition X, the move is defined by
reinsertion(i, q) = {X1, ..., Xy \ {i}, ..., Xq U {i}, ..., Xp}. The move
is valid if and only if it does not exceed the capacity of the
target subset X; and dj.q) < f(X). The evaluation of each fea-
sible move is performed by using the function:

w1(L, @) = digy — dicq)- ®)

This function obtains high values when the distance between i
and c(q) is less than the current assignment i to c(k). Therefore
high values of v (i, q) are preferred.

(N3) Exchange: This neighborhood considers moves where a node
i e J(X) (currently assigned to set Xy) and a node j € X \ {c(q)},
with k # q, are swapped, i.e., given a p-partition X, the move is
defined by swap(i,j) = {X1, ..., XU {}\ {i}, ... . Xq UL {1, ...,
Xp}. The move is valid if and only if it does not exceed the
capacity of the respective target subsets and dj., < f(X) and
dicq) < f(X). The evaluation of each feasible move is performed
by using the function:

wa (1)) = (dicy — dic(q)) + (djc(q) - djc(k))~ 9

This function obtains high values when the distance bet-
ween i and ¢(q) is less than the current assignment i to c(k),
and the distance between j and c(k) is less than the current
assignment j to c(q). Therefore high values of w,(i,j) are
preferred.

Algorithm 4. Pseudo-code of VND method that takes as input a
solution X.

1: procedure VND(X)

2: while h<2 do

3 X <X

4: for all ie 7(X) do
5 X'« Dbest(NV,(i, X))
6

7

8

end for
if X' is better than X then
: XX
9: h«1
10: else
11: h—h+1
12: end if

13:  end while
14: return X
15: end procedure

3.2.3. Shake

The previously described perturbation and VND methods con-
sider moves where centers tend not to change too much. The
computational effort of every move evaluation is reasonable. How-
ever, it is possible to force a more aggressive destruction/recon-
struction mechanism that would cause centers to change con-
siderably. This is achieved by a “shake” mechanism that is applied
after a local optima is reached under the iterative application of
the perturbation and VND. This, of course, requires more compu-
tational effort but it pays off. The shake method performs an
iterative removal and reconstruction of several subsets, which gre-
atly diversifies the search path.

The procedure (depicted in Algorithm 5) works as follows. Given a
p-partition X = (X, ...,X}), and a bottleneck node i € [7(X), we define
the set W% = (X, ... Xk} of q subsets with {ki, ...k} C K, whose
corresponding centers are the g nearest centers to i. This is an ordered
set, that is, c(k;) is the closest center to i. Note that k; may not
necessarily be equal to #(i), i.e., node i may not be assigned to its
closest center. Now, for each bottleneck node ie 7(X), such that
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kq = #(i), these g subsets in W® are to be destroyed, that is, each node
ie W is unassigned from its current set. The reason for this is that it
makes more sense to destroy territories where bottleneck nodes are
assigned to its closest center as it is more likely to change indeed the
value of the min-max objective function. Parameter q is fixed at
q = [In p]+ 1 which works reasonably well in preliminary testing. The
nodes in W are then unassigned or removed from X (Step 5). Then, we
construct a new partial g-partition X’ (Step 6) that allows to obtain a
new solution X (Step 7).

Algorithm 5. Pseudo-code of the Shake method that takes as
input a solution X.

1: procedure SHAKE(X)

2 g« [Inp]+1

3:  for all i e 7(X) such that k; = #(i) do
4 Set the g nearest subsets to i: W® « (X, ... X, }
5 X=X\ Wo

6: X'« ConstrUCTION(W, q)
7 X<XUX

8: end for

9: return X

10: end procedure

This reconstruction step introduces a randomized mechanism,
influenced by the construction phase. This shake mechanism does
not guarantee neither reducing bottleneck nodes nor improving
the objective value; however, the aggressive destruction diversifies
the partial structure of the current solution, selecting other subsets
of potential centers which may be desirable to guide the method
to other most promising search regions during the improvement
phase to be performed later.

Fig. 1 shows a segment of a solution which is eligible for
applying the shake method. In this example, node i is a bottleneck
node currently assigned to its closest center Kk, i.e., k = #(i). There-
fore, under the selection criterion previously defined with g=3,
the region formed by the subsets with centers k, [, and m is des-
troyed. Then these three sets are rebuilt using the construction
step defined in Algorithm 2, yielding a new solution.

4. Computational results

The proposed heuristic is evaluated on benchmark data sets
from the literature. The heuristic was implemented in C+ + and
compiled with GNU g+ + version 4.4.5. To obtain exact solutions
or lower bounds, the exact methods of Ozsoy and Pinar (OP) [3]
and Albareda-Sambola et al. (ADF) [4] were used. In these met-
hods, ILOG CPLEX 12.5 is used as LP solver. A time limit of 1 h and a
memory usage limit of 1 Gb for data sets A, B, C, and D-*, and 6 h
and a memory usage limit of 4 Gb for data set E were set as sto-
pping criteria. Each of the experiments was carried out on a plat-
form with AMD Opteron 2.0 GHz (x16), 32 GiB RAM under Debian
6.0.8 GNU/Linux Kernel 2.6.32-5, 64 bit architecture.

4.1. Description of test bed

For the experiments, we used five different data sets. No
benchmark instance data sets for the CpCP exist in the literature;
however, we tested and compared all methods using data sets
generated for other location problems and used in previous work
on this problem.

(Set A) Beasley OR-Library: This data set, proposed in [15] for the
capacitated p-median problem, contains two groups of 10

o

Fig. 1. Segment of a solution which is eligible for applying the shake method.

instances with equal facility capacity. One has 50 demand
nodes and 5 facilities to be located, and the other has 100
demand nodes and 10 facilities to be located.

Galvdao and ReVelle: This data set was generated by
Scaparra et al. [5] specifically for the CpCP based on the
data set of Galvdo and ReVelle for the maximal covering
location problem [16]. The data sets contain instances with
100 and 150 customers, and 5-15 centers, with variable
facility capacity. The original set is composed of two net-
works that were randomly generated.

Lorena and Senne: This set, proposed in [17] for the
capacitated p-median problem (CpMP), includes 6 large
instances whose sizes ranges from 100 to 402 customers,
and from 10 to 40 centers, and equal facility capacity.
Ceselli and Righini: There exists a recent data set added
to the OR-Library proposed in [18]. This is regarded as a
very hard set to solve for capacitated location problems
such as the p-median problem, and may be significantly
influenced by the ratio between n and p. The lower the
n/p ratio is the more difficult the instance tends to be.
We have observed a similar behavior when using this set
as data for our capacitated p center problem. In the
previous sets A, B, and C, this n/p ratio is 10 or more. This
D set is composed of 4 subsets «, 3,y and §, each subset
consists of forty instances created from the following set
based: 20 of them have a graph with 50 and 100 nodes;
the other 20 instances were randomly generated on
graphs with cardinality 150 and 200. Therefore, the same
40 instances were solved with different number of
centers for each data set: « with p=|n/10], g with
p=|n/4], y with p=|n/3] and 5 with p=[2n/5|. The
overall capacity was preserved in all subsets by setting
s;i=[12n/p]. We refer to these four different data sets as
D-a, D-p, D-y, and D-§, whose literal expresses the
complexity of each subset, where « is the easy subset
and s is the complex subset.

Reinelt: This set was generated by Lorena and Senne [17]
specifically for the CpMP based on the data set of instance in
the TSPLIB compiled by Reinelt [19]. The data set contains
5 instances with 3038 customers and 600-1000 centers and
equal facility capacity for instance, calculated as
si=[>_w;j/p x 0.8]. This set is considered large scale and
ratios n/p between 3 and 5.

(Set B)

(Set C)

(Set D)

(Set E)

4.2. Fine-tuning

The purpose of this first experiment is to fine-tune the heuristic
with respect to the destruction parameter « for each data set. This
is achieved by a detailed statistical analysis as described below.
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The response variable studied is the average relative percentage
deviation or gap as follows:

Ib
GAP =f(Xf)T_f x 100,

(10)
where f{X) is the resulting objective function value found for each
particular instance and f* its best known lower bound. This bound
was obtained by applying either of the exact methods OP or ADF. In
some cases, this computed lower bound turned out to be the optimal
solution, but when an exact method met the stopping condition by
time limit or memory usage, a lower bound is given. The heuristic
iteration limit was set to 100 for data sets A, B, C, and D-*, and 50 for
data set E; and was run for each value ae {0.0,0.1,...,1.0} on all
data sets, performing 5 replicates in this experiment. We separate
the results into eight blocks, according to the number of data sets
with subsets and study a single factor « of each block composed by
5 replicates, where GAP is the response variable.

Based on test with Tukey's Honest Significant Difference (HSD)
95%, it was observed that the set {0.7,0.6,0.7,0.6,0.4,0.5,0.4,0.4} of «
values gave the best results for data sets A, B, C, D-a, D-3, D-y, D-6,
and E, respectively. For the remaining experiments, we used these

Table 1
Comparison of methods on data set A.
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selected values for « and run our heuristic using 1000 as iteration
limit for data sets A, B, C, and D-*, and 200 as iteration limit for
data set E, with 30 repetitions.

4.3. Comparison between heuristics

The main purpose of these experiments is to provide a detailed
comparison between the proposed heuristic (QR) and the one by
Scaparra et al. (SPS) [5]. Version 1S with exact recentering, based
on the stack implementation of the set of candidates nodes Q, and
restricted relocation of the SPS heuristic was used. In addition, we
have decided to include the results obtained by the exact methods
OP and ADFE.

Tables 1-8 display the comparison of methods for each data
set. In each table the first two columns represent the instance size
measured by number of nodes n and number of partitions p.
“Instance” is the name of the particular problem instance and
“Optimal” indicates the optimal value of the instance or the best
known lower bound denoted by “*” beside the value. The section
“Time (s)” gives the execution time in seconds and “Deviation (%)”
expresses the percent of relative deviation or gap with respect to

n p Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR! QR?
50 5 cpmpO1 29 0.07 0.32 0.71 0.22 0.00 0.00 0.00 0.00 0.00
cpmp02 33 0.13 2.05 0.97 0.20 0.00 0.00 0.00 0.00 0.00
cpmp03 26 0.29 0.47 0.91 0.22 0.00 0.00 7.69 0.00 0.00
cpmp04 32 0.09 1.00 1.01 0.21 0.00 0.00 0.00 0.00 0.00
cpmp05 29 222 1.79 111 0.23 0.00 0.00 0.00 0.19 0.00
cpmp06 31 219 2.72 1.06 0.22 0.00 0.00 3.23 3.07 0.00
cpmp07 30 0.16 0.82 1.23 0.23 0.00 0.00 0.00 0.80 0.00
cpmp08 31 0.18 1.10 1.09 0.24 0.00 0.00 0.00 1.29 0.00
cpmp09 28 3.46 7.22 1.29 0.23 0.00 0.00 0.00 3.25 0.00
cpmp10 32 4.41 6.39 2.50 0.23 0.00 0.00 9.38 12.81 0.00
Average 132 2.39 119 0.22 0.00 0.00 2.03 214 0.00
100 10 cpmpl1 19 6.38 5.48 9.34 0.58 0.00 0.00 5.26 9.62 0.00
cpmp12 20 033 5.98 10.21 0.52 0.00 0.00 15.00 5.22 0.00
cpmp13 20 11.27 6.54 9.32 0.54 0.00 0.00 10.00 0.64 0.00
cpmp14 20 2.40 4.96 8.70 0.54 0.00 0.00 10.00 244 0.00
cpmp15 21 2.66 7.28 9.64 0.56 0.00 0.00 9.52 3.73 0.00
cpmp16 20 22.84 12.38 10.35 0.56 0.00 0.00 5.00 442 0.00
cpmp17 22 78.51 553.31 9.91 0.57 0.00 0.00 4.55 4.70 4.55
cpmp18 21 10.14 9.77 8.21 0.56 0.00 0.00 9.52 1.77 0.00
cpmp19 21 5.00 19.06 10.16 0.58 0.00 0.00 9.52 5.66 0.00
cpmp20 21 397.88 20.55 8.97 0.61 0.00 0.00 9.52 9.20 0.00
Average 53.74 64.53 9.48 0.56 0.00 0.00 8.79 4.74 0.46
Overall average 27.53 33.46 534 0.39 0.00 0.00 5.41 3.44 0.23

Table 2
Comparison of methods on data set B.

n p Instance Optimal Time (s) Deviation (%)
ADF opP SPS QR ADF oP SPS QR! QR?
100 5 G1 94 159.94 9.02 7.00 0.33 0.00 0.00 213 1.80 1.06
100 5 G2 94 53.37 12.41 7.09 0.33 0.00 0.00 213 1.83 0.00
100 10 G3 83 55.19 12217 14.02 0.67 0.00 0.00 8.43 8.68 4.82
100 10 G4 84 113.05 41.76 15.21 0.74 0.00 0.00 7.14 8.47 5.95
150 10 G5 95 430.61 302.30 40.55 0.90 0.00 0.00 7.37 445 211
150 10 G6 96 155.52 224.46 36.85 0.88 0.00 0.00 7.29 4.23 2.08
150 15 G7 89 208.94 102.64 49.78 1.16 0.00 0.00 8.99 8.00 5.62
150 15 G8 89 251.59 421.37 47.88 1.07 0.00 0.00 10.11 8.77 5.62
Overall average 178.53 154.52 27.30 0.76 0.00 0.00 6.70 5.78 341
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the optimal value or best known lower bound for each method.
In the case of exact methods, the gap represents the deviation
between best lower and upper bound found. For the proposed
method QR, we show the average time performance over the 30

Table 3

Comparison of methods on data set C.

139

independent repetitions, also “QR'%” and “QR%*%” denote the
average and best GAP, respectively, over all repetitions. Table 9
summarizes the comparison among methods for all data sets in
terms of their average of the percent of relative deviation, running

n p Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF or SPS QR! QR?
100 10 SJC1 364 262.10 368.97 14.59 0.54 0.00 0.00 26.67 25.52 5.28
200 15 Sjc2 304 58.24 114.24 79.90 1.09 0.00 0.00 19.02 5.88 1.60
300 25 SJC3a 278 142.70 283.95 23415 2.31 0.00 0.00 36.94 8.97 3.24
300 30 SJC3b 253 111.08 277.79 247.68 2.66 0.00 0.00 30.86 8.23 3.27
402 30 SJC4a 284 576.16 1100.08 631.14 3.37 0.00 0.00 42.29 8.58 4,51
402 40 SJC4b 239 251.51 343.50 505.12 4.36 0.00 0.00 34.93 9.15 3.60
Overall average 233.63 414.76 285.43 2.39 0.00 0.00 31.79 11.06 3.58
Table 4
Comparison of methods on data set D-a.
n D Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR! QR?
50 5 01 29 0.07 0.33 0.70 0.22 0.00 0.00 0.00 0.00 0.00
02 33 0.12 2.04 0.98 0.20 0.00 0.00 0.00 0.00 0.00
03 26 0.30 0.46 0.90 0.22 0.00 0.00 7.69 0.00 0.00
04 32 0.09 1.01 1.01 0.21 0.00 0.00 0.00 0.00 0.00
05 29 2.26 1.81 111 0.23 0.00 0.00 0.00 1.04 0.00
06 31 217 2.72 1.05 0.22 0.00 0.00 3.23 3.18 0.00
07 30 0.16 0.81 1.22 023 0.00 0.00 0.00 0.93 0.00
08 31 0.19 1.07 1.08 0.24 0.00 0.00 0.00 2.49 0.00
09 28 2.89 8.37 1.30 0.23 0.00 0.00 0.00 3.50 0.00
10 32 4,27 6.88 2.51 0.22 0.00 0.00 9.38 12.75 0.00
Average 1.25 2.55 119 0.22 0.00 0.00 2.03 2.39 0.00
100 10 1 19 6.31 5.52 9.18 0.56 0.00 0.00 5.26 11.37 0.00
12 20 0.34 5.75 10.21 0.54 0.00 0.00 15.00 530 0.00
13 20 11.12 6.65 9.67 0.54 0.00 0.00 10.00 1.75 0.00
14 20 2.45 4.70 8.68 0.54 0.00 0.00 10.00 3.40 0.00
15 21 2.68 7.28 9.60 0.55 0.00 0.00 9.52 4.19 0.00
16 20 23.69 12.34 10.34 0.55 0.00 0.00 5.00 4.80 0.00
17 22 77.74 554.23 9.78 0.57 0.00 0.00 4.55 5.86 4.55
18 21 10.16 9.86 8.21 0.56 0.00 0.00 9.52 2.38 0.00
19 21 4.94 19.84 10.20 0.56 0.00 0.00 9.52 6.85 0.00
20 21 395.24 20.38 8.87 0.59 0.00 0.00 9.52 9.52 9.52
Average 53.47 64.65 9.48 0.56 0.00 0.00 8.79 5.54 1.41
150 15 21 16 29.86 31.96 27.48 0.98 0.00 0.00 25.00 11.25 6.25
22 17 103.79 1386.81 24.76 1.01 0.00 0.00 11.76 4.83 0.00
23 16 33.12 37.78 23.35 1.03 0.00 0.00 18.75 11.88 0.00
24 16 54.09 56.31 29.18 1.01 0.00 0.00 25.00 12.63 6.25
25 16 0.72 32.71 22.99 0.95 0.00 0.00 12.50 0.00 0.00
26 16 14.66 57.28 28.48 0.97 0.00 0.00 12.50 8.88 6.25
27 18 3303.97 130.39 27.22 1.08 0.00 0.00 11.11 10.28 5.56
28 17 21.43 48.93 28.06 0.96 0.00 0.00 5.88 0.00 0.00
29 15 18.68 40.25 25.69 0.94 0.00 0.00 20.00 13.06 6.67
30 15 4.58 52.53 28.87 0.96 0.00 0.00 20.00 6.80 6.67
Average 358.49 187.50 26.61 0.99 0.00 0.00 16.25 7.96 3.77
200 20 31 14 45.00 29.83 52.55 1.50 0.00 0.00 21.43 5.57 0.00
32 14 3600.75 1798.05 86.42 1.80 714 0.00 28.57 27.94 14.29
33 14 58.70 101.90 57.16 1.43 0.00 0.00 28.57 11.07 714
34 15 97415 168.16 60.03 1.70 0.00 0.00 26.67 12.81 6.67
35 14 94.71 83.85 66.88 1.58 0.00 0.00 14.29 10.91 7.14
36 14 48.37 46.66 57.54 1.53 0.00 0.00 14.29 10.00 7.14
37 14 8.03 89.52 65.99 1.55 0.00 0.00 28.57 7.00 0.00
38 14 710.26 321.27 66.66 1.63 0.00 0.00 28.57 18.18 7.14
39 13 66.72 215.80 56.29 1.48 0.00 0.00 23.08 12.77 7.69
40 15 475.44 186.77 66.56 1.57 0.00 0.00 20.00 6.54 0.00
Average 608.21 304.18 63.61 1.58 0.71 0.00 23.40 12.28 5.72
Overall Average 255.36 139.72 25.22 0.84 0.18 0.00 12.62 7.04 2.72
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time, and the number of instances for each method that cannot
find any feasible solutions before the stopping criteria were met
(this event is indicated by “~” in the column).

As far as data set A is concerned (Table 1), the exact methods
were found very efficient for the smaller instance group (size
50 x 5), performing better than any heuristic. However, when
attempting the larger group (size 100 x 10), there are a couple of
instances for which the exact method struggled. The performance
of both heuristics was more robust than that of the exact method
as they both took less than 5.34 s to solve each instance. In terms
of solution quality, the proposed heuristic found better solutions
than the ones reported by the SPS heuristic.

When analyzing data set B (Table 2) we can observe that the
exact methods take considerably longer than both heuristics to
reach an optimal solution. In terms of heuristic solution quality,
our heuristic obtains slightly better solutions (average GAP of
5.78%) than the SPS heuristic (average GAP of 6.70%).

Table 5
Comparison of methods on data set D-.
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Regarding data set C (Table 3), we can observe that the best
exact method takes on average near 4 min while our heuristic
takes less than 3 s. When comparing our heuristic with the SPS
heuristic, we can see that ours is faster and finds solutions of
significantly better quality.

The results of data sets D-* are displayed in Tables 4-7. As
discussed in previous sections, this set is considered very difficult
because their value of p has a significant effect on the performance
of the methods. When analyzing subset D-« (Table 4), we observed
our heuristic outperforms heuristic SPS in terms of both solution
quality and computational effort. Regarding subset D-4 (Table 5),
SPS fails in finding feasible solutions to a significant number of
instances while our heuristic provides feasible solutions for all
instances. Finally, regarding subsets D-y and D-5 (Tables 6 and 7)
the infeasibility level of SPS increases considerably, while QR
provides a feasible solution for all instances of subset D-y and all
but two instances in D-§.

n p Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR! QR?
50 12 01 19 1.20 3227 1.18 043 0.00 0.00 0.00 5.16 0.00
02 20 0.93 3.07 219 0.42 0.00 0.00 10.00 13.70 10.00
03 20 0.85 39.52 1.96 0.47 0.00 0.00 10.00 11.40 5.00
04 24 7.92 535 2.51 0.49 0.00 0.00 8.33 20.75 16.67
05 21 46.47 15.40 3.28 045 0.00 0.00 9.52 21.48 14.29
06 22 8.60 511 3.73 0.41 0.00 0.00 4.55 16.00 0.00
07 20 2.32 2.10 4,99 0.41 0.00 0.00 0.00 10.39 0.00
08 23 2.28 2.63 3.78 039 0.00 0.00 435 4.35 435
09 19 7.60 14.65 0.45 035 0.00 0.00 - 22.74 21.05
10 23 2.55 3.87 0.15 0.32 0.00 0.00 - 2143 435
Average 8.07 12.40 2.42 0.42 0.00 0.00 5.84 14.74 7.57
100 25 11 14 209.89 435.85 8.72 1.48 0.00 0.00 0.00 14.57 0.00
12 13 2.67 28.05 9.67 1.40 0.00 0.00 15.38 11.28 7.69
13 13 1723.90 151.62 9.13 1.51 0.00 0.00 23.08 19.96 0.00
14 14 3600.00 35.88 10.12 1.50 15.38 0.00 714 7.26 7.14
15 14 14.01 13.76 10.07 1.54 0.00 0.00 2143 20.80 14.29
16 14 40.18 13.41 11.56 1.44 0.00 0.00 7.14 12.72 714
17 14 37.76 59.74 12.55 1.45 0.00 0.00 2143 26.98 21.43
18 14 18.74 43.47 10.68 1.42 0.00 0.00 14.29 2229 0.00
19 13 17.21 31.33 14.01 1.30 0.00 0.00 30.77 38.37 30.77
20 *13 3078.14 3600.00 0.58 1.10 23.08 7.69 - 81.80 38.46
Average 874.25 441.31 9.71 141 3.85 0.77 15.63 25.60 12.69
150 37 21 11 363.19 79.51 36.69 2.92 0.00 0.00 27.27 27.07 18.18
22 11 171.87 103.24 26.91 2.68 0.00 0.00 18.18 34.95 18.18
23 *11 763.98 3600.01 28.26 2.64 9.09 10.00 27.27 45.86 27.27
24 11 504.81 166.45 26.09 297 0.00 0.00 18.18 17.63 9.09
25 10 9.10 56.96 15.78 2.64 0.00 0.00 20.00 16.40 10.00
26 10 12.44 88.53 33.45 2.51 0.00 0.00 30.00 21.40 10.00
27 12 164.87 111.24 213.91 2.07 0.00 0.00 25.00 68.84 33.33
28 11 111.83 67.75 31.11 2.51 0.00 0.00 18.18 28.13 9.09
29 10 6.33 98.90 28.81 2.70 0.00 0.00 20.00 17.60 10.00
30 10 3217 116.24 28.23 2.60 0.00 0.00 30.00 23.60 10.00
Average 214.06 448.88 46.92 2.62 0.91 1.00 23.41 30.15 15.51
200 50 31 9 872.93 194.76 48.09 6.55 0.00 0.00 22.22 23.11 2222
32 *9 2152.14 3600.03 9.27 4.64 44.44 1111 - 287.13 144.44
33 *9 3473.79 3059.78 71.79 7.16 22.22 12.50 44.44 4444 44,44
34 *10 714.62 1489.29 25.50 4.76 20.00 1111 - 105.89 60.00
35 10 1645.72 118.15 42.46 6.86 22.22 0.00 20.00 20.28 10.00
36 9 1282.98 251.35 60.29 7.02 0.00 0.00 33.33 33.76 2222
37 9 66.58 183.14 45,71 6.67 0.00 0.00 22.22 19.81 11.11
38 10 1436.34 507.41 63.14 7.28 11.11 0.00 20.00 25.39 10.00
39 9 339.13 165.87 46.96 6.39 0.00 0.00 2222 14.44 1111
40 *9 2679.24 1331.90 55.01 7.50 22.22 12.50 33.33 53.56 33.33
Average 1466.34 1090.17 46.82 6.48 14.22 4.72 27.22 62.78 36.89
Overall Average 640.68 498.19 26.47 2.73 4.74 1.62 18.03 33.32 18.17
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Finally, the results of data set E are displayed in Table 8. We can
observe that both the exact methods failed. They no longer solve
any instance in 6 h of CPU time. Method ADF provides the best
lower bound (f) for all instances, but this bound is very poor. In
terms of heuristic solution quality, the proposed method obtains
better solutions than those obtained by the SPS heuristic using less
computational effort.

Table 9 summarizes the comparison among methods. Analyz-
ing this table, we observe that QR is considerably faster than SPS
for all data sets. Regarding solution quality, the proposed method
provides acceptable solutions for data sets A, B, C and for subsets
D-a and D-4. For subsets D-y and D-6, the comparison between QR
and SPS in terms of solution quality does not make too much sense
because SPS fails in finding feasible solutions to a large number of
instances. As we can see SPS fails finding feasible solution in 34
instances, whereas QR fails in only 2. Analyzing data set E, QR
clearly outperforms all other methods, whose computation time
and resources grow considerably. In that regard, our heuristic is

Table 6
Comparison of methods on data set D-y.

still better as it was able to find feasible solutions to practically
every instance. When compared to the exact methods over all data
sets, our heuristic is still more reliable in terms of number of
feasible solutions found. Exact methods ADF and OP failed in
finding feasible solutions in 41 and 18 instances, respectively,
while QR failed in only 2 instances.

4.4. Component analysis

In this last experiment, we assess the value that each individual
component gives to the QR heuristic. We consider the three
essential components of the method: Perturbation, VND and
Shake. The experiment consists of disabling one component at a
time and running the heuristic using 1000 as iteration limit for the
data sets A, B. C, and D-*, and 200 as iteration limit for the data set
E, with 30 repetitions. The same set of « values of the previous
experiment is used. Table 10 displays the comparison of
the components for each data set. In this table, the column “All”

n p Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR! QR?
50 16 01 17 0.12 37.06 1.23 0.55 0.00 0.00 0.00 8.70 0.00
02 18 15.81 23.62 2.67 0.61 0.00 0.00 5.56 12.13 5.56
03 15 213 18.80 1.99 0.55 0.00 0.00 0.00 47.33 0.00
04 21 3.92 3.28 3.40 0.64 0.00 0.00 4.76 14.29 14.29
05 18 0.08 22.87 3.07 0.63 0.00 0.00 0.00 32.96 16.67
06 19 34.18 2.29 6.69 0.53 0.00 0.00 5.26 32.00 15.79
07 18 11.46 3.02 7.20 0.57 0.00 0.00 5.56 22.37 5.56
08 20 10.39 71.76 0.53 0.52 0.00 0.00 - 28.17 20.00
09 17 5.06 26.33 0.62 0.48 0.00 0.00 - 3343 11.76
10 23 6.86 171.56 0.19 0.49 0.00 0.00 - 38.00 13.04
Average 9.00 38.06 2.76 0.56 0.00 0.00 3.02 26.94 10.27
100 33 1 11 7.85 32.90 12.61 247 0.00 0.00 27.27 30.65 9.09
12 12 37.11 31.91 12.73 2.20 0.00 0.00 8.33 28.50 8.33
13 12 903.74 59.72 9.68 2.03 0.00 0.00 8.33 19.67 0.00
14 12 1053.49 48.20 16.82 2.10 0.00 0.00 16.67 28.17 16.67
15 13 49.23 55.04 11.29 214 0.00 0.00 7.69 22.82 7.69
16 13 1864.90 79.53 17.15 220 833 0.00 15.38 38.12 15.38
17 13 408.38 58.80 24.23 1.95 0.00 0.00 7.69 12.69 0.00
18 14 3600.01 170.91 18.27 214 7.69 0.00 714 22.38 7.14
19 *11 3600.00 3600.00 28.15 239 9.09 10.00 18.18 67.09 18.18
20 12 96.22 102.24 4,76 1.67 0.00 0.00 - 95.79 41.67
Average 1162.09 423.93 15.57 213 2.51 1.00 12.96 36.59 12.42
150 50 21 11 3600.00 1592.62 58.20 5.79 20.00 0.00 18.18 49.09 18.18
22 10 1077.10 159.58 59.59 5.00 0.00 0.00 30.00 120.00 70.00
23 11 33.99 208.82 32.27 433 0.00 0.00 - 114.90 63.64
24 10 136.11 168.12 4421 5.84 0.00 0.00 20.00 37.20 30.00
25 9 98.25 99.75 24.29 6.07 0.00 0.00 1111 32.66 11.11
26 9 15.88 107.44 26.44 5.93 0.00 0.00 22.22 54.14 22.22
27 *11 617.72 3600.00 22.10 4.22 9.09 10.00 - 159.90 54.55
28 10 3600.00 122.35 28.33 5.70 11.11 0.00 10.00 32.61 10.00
29 9 6.92 140.94 30.29 5.69 0.00 0.00 22.22 47.22 33.33
30 9 226.47 194.87 20.30 6.18 0.00 0.00 22.22 48.00 22.22
Average 941.24 639.45 34.60 5.47 4.02 1.00 19.49 69.57 33.53
200 66 31 8 19.26 95.66 52.80 10.04 0.00 0.00 25.00 40.49 12.50
32 9 3600.01 1498.20 9.73 6.94 2222 0.00 - 393.83 244.44
33 8 3600.00 1531.59 67.81 10.29 12.50 0.00 37.50 64.65 50.00
34 10 876.98 769.40 67.84 717 3333 0.00 - 185.17 110.00
35 8 717.64 182.56 65.16 10.52 0.00 0.00 37.50 54.38 37.50
36 8 3600.01 283.53 40.23 11.42 12.50 0.00 37.50 62.29 37.50
37 8 21.10 313.41 58.08 10.50 0.00 0.00 25.00 56.32 25.00
38 *8 3600.00 3600.00 73.45 10.07 12.50 14.29 50.00 70.42 50.00
39 8 27.09 259.93 46.90 10.06 0.00 0.00 25.00 27.92 25.00
40 9 489.26 302.57 70.91 11.02 12.50 0.00 22.22 54.26 33.33
Average 1655.14 883.69 55.29 9.80 10.56 1.43 32.47 100.97 62.53
Overall Average 941.87 496.28 27.05 4.49 4.27 0.86 16.99 58.52 29.68
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Table 7
Comparison of methods on data set D-5.

n p Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR' QR?
50 20 01 17 0.23 107.37 1.78 0.64 0.00 0.00 0.00 62.23 5.88
02 18 0.70 78.12 4.24 0.95 0.00 0.00 5.56 59.93 16.67
03 17 2.38 87.34 6.29 0.80 0.00 0.00 0.00 130.85 4118
04 20 29.45 102.04 4.71 0.74 0.00 0.00 10.00 44.00 20.00
05 19 21.26 63.37 0.36 0.59 0.00 0.00 - 88.76 4211
06 21 412 18.01 0.22 0.60 0.00 0.00 - 60.93 40.00
07 19 4.81 17.83 023 0.65 0.00 0.00 - 70.10 10.53
08 23 3600.00 159.20 0.23 0.59 20.00 0.00 - 39.48 435
09 21 21.21 68.26 0.22 0.58 0.00 0.00 - 92.28 42.86
10 23 14.20 52.95 0.24 0.60 0.00 0.00 - 159.78 82.61
Average 369.84 75.45 1.85 0.67 2.00 0.00 3.89 80.83 30.62
100 40 1 12 52.88 125.81 37.62 2.77 0.00 0.00 16.67 76.48 41.67
12 11 3600.01 89.80 25.44 3.18 20.00 0.00 18.18 74.30 36.36
13 12 284.85 138.65 22.88 271 0.00 0.00 0.00 73.80 41.67
14 12 12.69 90.96 70.71 221 0.00 0.00 - 121.62 58.33
15 13 4.25 145.28 5.78 2.35 0.00 0.00 - 130.92 69.23
16 13 272.28 143.99 103.63 223 0.00 0.00 - 66.41 30.77
17 14 3600.01 154.08 5.49 2.10 7.69 0.00 - 134.98 64.29
18 14 3600.01 209.06 3.39 2.02 7.69 0.00 - 11115 50.00
19 12 3600.00 289.10 29.40 2.15 9.09 0.00 - 109.83 58.33
20 14 73.41 509.37 3.93 2.07 0.00 0.00 - 278.57 164.29
Average 1510.04 189.61 30.83 2.38 445 0.00 11.62 117.81 61.49
150 60 21 11 3600.00 290.33 242.81 8.12 20.00 0.00 18.18 119.80 63.64
22 12 3600.00 2930.40 10.23 5.20 9.09 0.00 - 275.37 116.67
23 11 270.09 231.48 5.87 5.20 0.00 0.00 - 273.67 127.27
24 9 3002.52 180.47 81.27 6.88 0.00 0.00 33.33 120.43 66.67
25 9 5.21 142.60 24.77 7.85 0.00 0.00 1111 73.89 22.22
26 9 43.51 194.92 36.84 10.51 0.00 0.00 22.22 86.36 44.44
27 *13 3600.04 3600.00 7.74 5.08 7.69 111 - 238.46 238.46
28 10 3600.00 1615.84 35.98 7.47 11 0.00 20.00 7217 30.00
29 9 8.04 232.82 38.47 8.56 0.00 0.00 22.22 91.05 44.44
30 9 14.84 240.06 31.32 7.58 0.00 0.00 1111 77.22 33.33
Average 1774.43 965.89 51.53 7.24 4.79 111 19.74 142.84 78.71
200 80 31 8 26.43 233.07 55.32 13.82 0.00 0.00 37.50 75.00 37.50
32 *10 3600.03 1277.43 11.98 8.45 40.00 37.50 - - -
33 8 84.32 402.58 107.37 12.38 0.00 0.00 37.50 112.57 62.50
34 12 1577.88 421.93 11.98 8.73 40.00 0.00 - - -
35 *8 3600.00 1318.10 125.24 11.40 12.50 14.29 50.00 124.79 62.50
36 9 57.93 171.37 403.80 11.61 0.00 0.00 - 135.37 66.67
37 8 32.87 334.25 72.87 14.14 0.00 0.00 25.00 109.10 62.50
38 8 3600.00 433.88 18.90 9.34 12.50 0.00 - 245.88 100.00
39 8 85.02 302.22 42.66 17.40 0.00 0.00 25.00 80.90 37.50
40 *8 3600.01 927.86 94.24 11.64 12.50 14.29 - 186.80 87.50
Average 1626.45 582.27 94.44 11.89 11.75 6.61 35.00 133.80 64.58
Overall Average 1320.19 453.30 44.66 5.55 5.75 1.93 17.56 118.82 58.85
Table 8
Comparison of methods on data set E.
n P Instance Optimal Time (s) Deviation (%)
ADF oP SPS QR ADF oP SPS QR' QR?

3038 600 R1 *77 21600.00 1167.03 1038.46 192.35 93.51 - 532.47 115.54 88.31
3038 700 R2 *58 21600.00 1167.04 941.10 246.38 156.90 - 406.90 177.59 165.52
3038 800 R3 *58 21600.00 1167.05 2975.48 326.45 156.90 - 372.41 201.03 163.79
3038 900 R4 *58 21600.00 1167.10 857.26 462.34 156.90 - 432.76 240.75 182.76
3038 1000 R5 *40 21600.00 1167.05 3575.76 524.59 272.50 - 485.00 471.25 352.50
Overall average 21600.00 1167.06 1877.61 350.42 167.34 - 44591 241.23 190.58

represents the average GAP when all components are enabled,
which matches the value displayed in Table 9, column QR?. Each
column in the section “Components” represent the component
disabled during the experiment and shows the average GAP value
obtained. The section “Contribution %” displays the percentage

value that the specific component provides with respect to total
value shown in “All”. For instance, in the row associated to data set
A, QR obtains solutions that have an average GAP of 0.23%. When
QR is run with the Perturbation component disabled, the average
deviation worsens to 17.25%. This represents a 77.25% contribution
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as indicated in the Contribution (%), computed as follows:

Perturbation — All

Contribution=———— ————
ontribution ST (GAP— Al

x 100, (11)

where c is the total number of components, and GAP; is the ave-
rage quality solution obtained when the i-th component is disa-
bled. It is remarkable that the most influential component within
the heuristic is the Perturbation, followed by VND and Shake. This
is consistent with the statistical analysis, which showed that the
parameter «, used in the perturbation, influences the response var-
iable. Nevertheless, all other two components add value to the
overall performance. The benefit of VND ranges from 8.32% to
16.53%, and the benefit of the Shake method ranges from 0.64%
to 24.12%.

4.5. Asymptotic analysis

5. Conclusions

We have proposed a metaheuristic framework that integrates
several components such as a greedy randomized procedure with
adaptive probabilistic selection in its construction phase and ite-
rated greedy local search with a variable neighborhood descent in
its local search phase. The results indicate that the proposed heu-
ristic outperforms the best heuristic in terms of solution qua-
lity, running time, and reliability on finding feasible solutions
in harder instances. The performance of the proposed approach
is more robust than that of the exact methods, requiring less
computational effort and memory for obtaining solutions of
reasonably good quality for data sets A, B, and C. For the harder
instances in data sets D-yand D-§, the optimality gaps of the

Table 10
Component-wise analysis for heuristic QR.

Data set All Components Contribution (%)
Fig. 2 shows a comparison of the methods in terms of their Perturbation VND  Shake Perturbation VND Shake
asymptotic running time and used memory resources with respect
to the instance size. The memory statistic indicates the maximum A 023 17.25 277 270 77.25 11.5211.23
id . d in bits. that is. th . ber of B 3.41 12.53 466 533 7419 10.16 15.65
resi ent set_51ze used [20], in bits, that is, t e maximum number o c 358 36.63 832 1559 66.38 051 2412
bits of physical memory that each approach used simultaneously. D-a 2.72 31.87 561 539 83.98 832 7.70
As can be seen, the resources used by the proposed approach are D-p 18.17  106.97 3319 29.04 7742 13.09 948
lower than those used by the other three methods. In particular, D-y 2968 195.23 4681 4503  83.60 865 7.75
the memory usage requirements of the two exact methods, as D-6 28.85  261.94 105.76 ~ 92.62 .57 1653 11.90
ry usage req J E 19058 49662 24565 19291 8420 1515 064
expected, are considerably larger.
Table 9
Summary of comparison among methods on all data sets.
Data set Average deviation (%) Average time (s) Number of failures
ADF oP SPS QR? ADF oP SPS QR ADF oP SPS QR
A 0.00 0.00 5.41 0.23 27.53 33.46 5.34 0.39 0 0 0 0
B 0.00 0.00 6.70 3.41 178.53 154.52 27.30 0.76 0 0 0 0
C 0.00 0.00 31.79 3.58 233.63 414.76 285.43 2.39 0 0 0 0
D-a 0.18 0.00 12.62 2.72 255.36 139.72 25.22 0.84 1 0 0 0
D-p 4.74 1.62 18.03 18.17 640.68 498.19 26.47 2.73 9 6 5 0
D-y 427 0.86 16.99 29.68 941.87 496.28 27.05 4.49 12 3 8 0
D-5 5.75 1.93 17.56 58.85 1320.19 45330 44.66 5.55 14 4 21 2
E 167.34 - 44591 190.58 21600.00 1167.06 1877.61 350.42 5 5 0 0
Time Complexity Memory Complexity
100000 ‘ — 1e+07 ‘ —
QR —o— QR —e—
SPS —%—
ADF & a
opP —8—
10000 |- 1
1e+06
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2]
© [%2]
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Fig. 2. Comparison among methods in terms of asymptotic running time and memory usage. The axes are on a logarithmic scale.
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heuristic solutions are not as good; however, they are still
obtained very quickly. For this harder set, our heuristic found
feasible solutions to almost all instances tested, which is clearly
superior to the SPS heuristic as it failed in several instances. For
the large scale data set E, both exact methods failed in finding
optimal solutions to all instances tested. Our heuristic found better
solutions than the best integer solution reported by the exact
methods. Our heuristic clearly outperformed SPS as well in this
data set. In a detailed component analysis, we have seen that the
success of the heuristic is mainly due to the perturbation and VND
methods. However, for data sets A, B, and C, the shake method
proved very worthwhile as well.

The proposed method provides robust solutions in a short time
to the problems previously discussed in the literature. For data sets
D and E analyzed in this paper, the method ensures greater success
in finding feasible solutions than that of the existing heuristic.
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