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a b s t r a c t

In this work, we present a dual bounding scheme for a commercial territory design problem. This problem
consists of finding a p-partition of a set of geographic units that minimizes a measure of territory dispersion,
subject to multiple balance constraints. Dual bounds are obtained using binary search over a range of
coverage distances. For each coverage distance a Lagrangian relaxation of a maximal covering model is used
effectively. Empirical evidence shows that the bounding scheme provides tighter lower bounds than those
obtained by the linear programming relaxation. To the best of our knowledge, this is the first study about
dual bounds ever derived for a commercial territory design problem.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Territory design can be viewed as the problem of grouping small
geographical areas, called basic areas, into larger geographic clusters
called territories according to specific planning criteria. These pro-
blems arise in different applications such as political districting
[17,23,24,35,30,2,3] and sales territory design [43,45,46,14,9,22] to
name the most relevant. An extensive survey on general territory
design problems and their approaches can be found in Kalcsics et al.
[26] and Duque et al. [10].

The problem addressed in this paper is motivated by a concrete
practical application from a local beverage firm. To improve customer
supply, the company needs to divide the set of city blocks (or basic
units) in the city area into a specific number of disjoint territories. In
particular, the planning requirements considered in this problem are
territory compactness and territory balancing with respect to two
activity measures present at every basic unit. The former criterion
means that customers within a territory are relatively close to each
other while the latter requirement refers to creating territories of
about equal size in terms of both number of customers and product
demand. This problem can be classified as a commercial territory
design problem (TDP) for which related versions under different
requirements have been addressed in literature from both exact and
heuristic approaches.

Typically, the problem is modeled as minimizing a dispersion
measure subject to some planning requirements such as connectivity
and territory balancing. The connectivity requirement implies that

basic units (BUs) that are assigned to the same territory must reach
each other by traveling within the territory. Depending on how the
dispersion measure objective is chosen, we can further classify these
TDP models as p-median TDPs (PMTDP) and p-center TDPs (PCTDP).
Heuristic methods have been developed for both different versions
PCTDPs and PMTDPs. Ríos-Mercado and Fernández [36] introduced
the PCTDP subject to connectivity and multiple balance constraints.
They propose a Reactive GRASP to solve the problem. Their proposed
approach obtained solutions of much better quality (in terms of
dispersion measure and the balancing requirements) than those
found by the company method in relatively fast computation times.

Later, Caballero-Hernández et al. [4] study other version of the
commercial PCTDP model that includes additional joint assign-
ment constraints which means that some units are required to
belong to the same territory. In that work, the authors develop a
metaheuristic solution approach based on GRASP. Experimental
results show the effectiveness of their method in finding good-
quality solutions for instances up to 500 BUs and 10 territories in
reasonably short computation times. Particularly, a very good
performance is observed within the local search procedure, which
produces an improvement of about 90% in solution quality.

Ríos-Mercado and Salazar-Acosta [38] address an extension of
the TDP that considers requirements about design and routing in
territories. In contrast to the TDP variations described above, the
authors use network-based distances between BUs (instead of
Euclidean distances) and a diameter-based function to measure
territory dispersion. To solve this problem, the authors proposed a
GRASP that incorporates advanced features such as adaptive
memory and strategic oscillation. Empirical evidence shows that
the incorporation of these two components into the procedure had
a very positive impact on both obtaining feasible solutions and
improving solution quality.
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Salazar-Aguilar et al. [39] present an exact optimization frame-
work based on branch and bound and cut generation for tackling
relatively small instances of several TDP models. Particularly, they
studied both, the PCTDP and PMTDP models. They successfully
solved instances of up to 100 BUs for the PCTDP and up to 150 BUs
for the PMTDP. The authors also propose new integer quadratic
programming models that allowed to efficiently solve larger
instances by commercial MINLP solvers. For IQPs models, they
obtained locally optimal solutions for instances with up to 500 BUs
and 12 territories.

Ríos-Mercado and López-Pérez [37] and López-Pérez and Ríos-
Mercado [28] address a commercial TDP with additional side
constraints such as disjoint assignment requirements and similar-
ity with existing plan. In their work, they assume a fixed set of
centers, and present several heuristic algorithmic strategies for
solving the allocation phase.

Recently, a bi-objective TDP model was introduced by Salazar-
Aguilar et al. [40], where an ε�constraint method is developed for
tackling small- to medium-scale instances from an exact optimiza-
tion perspective. In that work, two different measures of disper-
sion are studied, one based on the p-center problem objective and
the other based on the p-median objective model. It was shown
how the latter had a tighter LP relaxation that allowed to solve
larger instances. The proposed method was successful for finding
optimal Pareto frontiers on instances from 60 up to 150 BUs and
6 territories. It was also clear that larger instances were indeed
intractable, thus justifying the use of heuristic approaches pro-
posed by Salazar-Aguilar et al. in [41,42]. In these works, the
authors address the development of GRASP and Scatter Search (SS)
strategies to handle considerably large instances. These proposed
heuristic procedures outperformed two of the well-known and
most successful multiobjective algorithms in the field, the Non-
dominated Sorting Genetic Algorithm (NSGA-II) by Deb et al. [8]
and the Scatter Tabu Search Procedure for Multiobjective Optimi-
zation (SSPMO) by Molina et al. [32].

As it can be seen, from literature, practically all of the work on
commercial territory design has focused on developing heuristics
for finding good feasible solutions to large instances in reasonable
times due to the well established NP-completeness of both PCTDP
and PMTDP [36,39]. However, thus far, the quality of the solutions
obtained by these heuristic methods has not been properly
assessed since the quality of the lower bound provided by the
linear programming relaxation of TDP models is very poor. To the
best of our knowledge, no dual bounding schemes have been
developed for any of the commercial TDP models found in the
literature. It is worth mentioning that besides being useful in
evaluating the quality of heuristic solutions, dual bounds are also
the foundations in the development of exact solution methods.

Therefore, the main contribution of this work is the introduc-
tion and development of the first dual bounding scheme for a
commercial territory design problem. The TDP addressed here
considers balance and compactness requirements. This scheme is
motivated by exact solution methodologies already found in
literature for related location problems, where the main idea is
to generate and solve a set of auxiliary problems. Particularly,
Albareda-Sambola et al. [1] propose a successful exact solution
method for the capacitated p-center problem (CpCP) that involves
a procedure for obtaining lower bounds for this problem. The
bounding procedure developed in [1] is not quite applicable for
our problem; however, given the strong similarities, one of the
goals of this paper is to extend this bounding procedure to handle
multiple balance constraints.

The proposed algorithm performs a binary search over a
specific set of covering radii extracted from the distances matrix
and solves for each of them a Lagrangian dual problem based on a
maximal demand covering problem. The evaluation of this dual

problem for a given radius δ can determine, under certain
conditions, when such covering radius is a dual bound for TDP.
An empirical study was carried out on a collection of data
instances. The results show the effectiveness of the developed
scheme as it considerably outperforms the linear programming
relaxation dual bound.

The paper is structured as follows. Section 2 defines the
problem formally and describes the mathematical formulation.
Section 3 presents the dual bounding scheme and each of its
components. Experimental work is included in Section 4. Finally,
conclusions and some final remarks are drawn in Section 5.

2. Problem description

Let V be a set of nodes or BUs representing city blocks. Let wi
a be

the measure of activity a in block i, aAA¼ f1;2g where a¼1 denotes
number of customers and a¼2 denotes product demand. Let dij be
the Euclidean distance between each pair of basic units i and j. The
number of territories is given by p. A territory design configuration is
a p-partition of the set V. Let waðVkÞ ¼∑iAVk

wa
i be the size of

territory VkDV with respect to activity a. A solution to this problem
must have balanced territories with respect to each activity. Due to
the discrete nature of the problem and to the unique assignment
constraints, it is practically impossible to get perfectly balanced
territories. Thus, in order to address this issue, a tolerance parameter
τa for each activity a is introduced. This tolerance parameter is user
specified and it represents a limit on the maximum deviation
allowed from an ideal target. This target value is given by the average
size μa ¼waðVÞ=p. Finally, in each of the territories, basic units must
be relatively close to each other. To account for this, in this work we
use a dispersion function based on the p-center problem objective.

All parameters are assumed to be known with certainty.
Therefore, the problem can be formally described as finding a
p-partition of a set V of basic units that meets multiple balance
constraints and minimizes a dispersion measure.

2.1. Integer programming formulation

To state the model mathematically, we define the following
notation:

Indices and sets

V set of BUs,
A set of BUs activities,
i; j BUs indices; i; jAV ¼ f1;2;…;ng,
a activity index; aAA¼ f1;2g.

Parameters

n number of BUs,
p number of territories,
wi

a value of activity a in node i; iAV , aAA,
dij Euclidean distance between i and j; i; jAV ,
τa relative tolerance with respect to activity a; aAA,

τaA ½0;1�.
μa waðVÞ=p, average (target) value of activity a; aAA.

Although the practical decision does not require to place
facilities on centers as it is done in location problems, we used
binary decision variables based on centers because they allowed to
model territory dispersion appropriately.

Decision variables:

xij ¼
1 if BU j is assigned to territory with center in BU i;

0 otherwise:

�
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With this notation our commercial TDP can be formulated as
the following MILP:

(TDP)

Minimize f ðxÞ ¼max
i;jAV

fdijxijg ð1Þ

subject to ∑
iAV

xij ¼ 1; jAV ; ð2Þ

∑
iAV

xii ¼ p; ð3Þ

∑
jAV

wa
j xijZ ð1�τaÞμaxii; iAV ; aAA; ð4Þ

∑
jAV

wa
j xijr ð1þτaÞμaxii; iAV ; aAA; ð5Þ

xijAf0;1g; i; jAV : ð6Þ

Objective (1) measures territory dispersion. Constraints (2)
guarantee that each basic unit j is assigned to only one territory.
Constraint (3) assures the creation of exactly p territories. Con-
straints (4) and (5) represent the territory balance with respect to
each activity measure as they establish that the size of each
territory must lie within a range (measured by a tolerance
parameter τa) around its average size (μa). Moreover, the upper
bound balance constraints (5) also ensure that if no center is
placed at i, no customer can be assigned to it (i.e., xii ¼ 0 ) xij ¼ 0,
8 i; jAV). Finally, constraints (6) define the binary nature of the
decision variables.

The model can be viewed in terms of integer programming as a
vertex p-center problemwith multiple capacity constraints (5) and
with additional constraints (4). Given that even the uncapacitated
vertex p-center problem is NP-hard [27], it follows that our
commercial TDP is also NP-hard. Our model is derived from the
model introduced by Ríos-Mercado and Fernández [36] that
includes additional planning requirements.

3. The dual bounding scheme

The bounding framework proposed in this work follows the
methodology that underlies a wide range of successful exact and
approximate solution approaches for p-center problems. These
problems are most often solved through generation and solution
of a sequence of auxiliary problems that keep a strong structural
relation with the p-center problem and assure an optimal solution
to the original problem. In this case, the use of an auxiliary
problem allows achieving the same goal through simplest equiva-
lent formulations. Different auxiliary problems have been pro-
posed, mostly related to coverage problems such as the location set
covering problem [44] and the maximal covering location problem
[5]. Successful techniques for the p-center problem use a common
principle to perform an iterative search over a range of coverage
distances searching for the smallest radius such that the optimal
solution to the associated auxiliary problem provides a feasible
solution to the p-center problem. Representative works for unca-
pacitated p-center problem can be found in Minieka [31], Daskin
[6,7] and Elloumi et al. [11]. For the capacitated version (CpCP),
which has been less studied, Özsoy and Pinar [34] and Albareda-
Sambola et al. [1] propose exact solution algorithms where the
latter presents the best results so far. In [1], they addressed two
auxiliary problems (arising from both set and maximal covering
problems) and analyzed two different strategies for solving exactly
CpCP, based on binary search and sequential search. Given that the
CpCP is a substructure of the TDP model, this paper exploits the
knowledge generated in [1] for deriving dual bounds for the TDP.

In order to introduce the proposed scheme, we highlight the
following remarks from the TDP formulation discussed in the
previous section.

Remark 1.

� Let D ¼ fd0; d1;…; dkmax g be the set of the kmax different values of
the distance matrix D¼ ðdijÞ sorted by non-decreasing values
(d0od1o⋯odkmax ), and let K ¼ f0;1;…; kmaxg be the corre-
sponding index set in D. Given the nature of the objective
function, which minimizes the maximum distance between a
basic unit and the territory center to which it is assigned, it can
be seen that the optimal value of TDP is an element of D.

� If dkn is the optimal value of TDP for some index knAK , note
that any dkAD with krkn (kZkn) is a lower (upper) bound on
the optimal value dkn .

Therefore, the algorithm relies on an iterative search procedure
that attempts to find the best lower (dual) bound by exploring the
set of distances in D. At each iteration, it sets a threshold distance
which is used as the coverage radius of an associated covering
problem. This auxiliary problem allows to determine when it is not
possible to assign all basic units into p or less territories within
such radius, yielding therefore a valid dual bound on the optimal
value of TDP. In this section we detail the components of this dual
bounding procedure.

3.1. The maximum demand covering problem

From the TDP, we derive an auxiliary problem which gives an
answer as to whether we can assign all basic units within a certain
radius δ into at most p territories, the maximum demand covering
problem. This problem operates with a fixed maximum distance δ
known as covering radius and considers the objective of maximiz-
ing the total amount of covered demand when at most p territory
centers are located. This auxiliary problem can be seen as an
extension of a well-known problem from location optimization
literature, the maximal covering location problem (MCLP) [5], as
we consider additional capacity constraints (4)–(5).

To formulate the model we will use the following additional
notation:

IδðjÞ ¼ fiAV : dijrδg;
JδðiÞ ¼ fjAV : dijrδg;

bðδ;aÞi ¼min ð1þτaÞμa; ∑
jA JδðiÞ

wa
j

( )
;

where IδðjÞ denotes the set of territory centers whose distance to
basic unit j does not exceed the radius δ. Similarly, for a given
territory center i, JδðiÞ denotes the set of basic units whose distance
to i does not exceed the radius δ. Additionally, the parameter bðδ;aÞi
has the purpose of strengthening the model since it fits the upper
limit of activity measures for territory balance constraints (5). The
maximum demand covering problem henceforth denoted as
MDCPδ can be formulated as follows:

ðMDCPδÞ
WðδÞ ¼Maximize f ðxÞ ¼ ∑

iAV
∑

jA JδðiÞ
w1

j xij ð7Þ

subject to ∑
iA IδðjÞ

xijr1; jAV ; ð8Þ

∑
iAV

xiirp; ð9Þ

∑
jA JδðiÞ

wa
j xijZð1�τaÞμaxii; iAV ; aAA; ð10Þ
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∑
jA JδðiÞ

wa
j xijrbðδ;aÞi xii; iAV ; aAA; ð11Þ

xijAf0;1g; iAV ; jA JδðiÞ: ð12Þ

The objective function (7) maximizes the total amount of
demand or product demand (i.e., activity measure a¼1) that can
be covered. By constraints (8) each customer is assigned to at most
one territory. Constraints (10) and (11) conform the territory
balance constraints, which are referred to as minimum and max-
imum territory capacity constraints, respectively. In particular,
constraints (11) also guarantee that if no center is placed at i, no
customer can be assigned to it. Finally, constraint (9) assures the
creation of at most p territories. Then, the maximum demand
covering problem consists of maximizing the total demand of BUs
that can be satisfied with at most p territories within a given
maximum distance δ.

We investigate now the relation between TDP and MDCPδ. Let
W tot ¼∑jAVw1

j be the sum of demand corresponding to activity
measure a¼1 (i.e., product demand) over all basic units. When
solving MDCPδ we have the following cases.

Case 1: If for some kAK , the total demand that can be satisfied
within a radius dkAD is W tot and p territory centers are selected,
then all BUs have been assigned and the assignment obtained from
MDCPδ is a feasible solution for TDP. Therefore, the radius dk is a
valid upper bound on the optimal value of TDP.

Case 2: The optimal solution to TDP can be obtained through
the auxiliary problem MDCPδ by finding the smallest coverage
radius where all the BUs can be assigned (i.e., the smallest index
kAK such that WðdkÞ ¼W tot) and exactly p territory centers are
selected. Note that an optimal solution to MDCPδ , δAD, that has
all the BUs assigned with strictly less than p territories is possible.
However, the number of territories required to cover the max-
imum amount of demand increases when the coverage radius
decreases. Thus, a smaller radius δnAD can always be found such
that the optimal solution to MDCPδn is still covering the total
demand W tot using exactly p territories (otherwise the TDP would
be unfeasible).

Case 3: If for some kAK , WðdkÞoW tot, it can be seen that it is
not possible to assign all BUs within such covering radius and
therefore the radius dk is a valid lower bound on the optimal value
of TDP.

An advantage of MDCPδ is that its objective function WðδÞ
determines when δ is either a bound (dual or primal) or the
optimal value for the TDP, depending on the number of BUs that
were assigned in the MDCPδ optimal solution. Also note that,
without loss of generality, activity 2 can be alternatively used
instead of activity 1 in the objective function WðδÞ and by using
W2

tot ¼∑jAVw2
j the just described cases still apply.

Given that MCLP is NP-hard [29], it follows that MDCPδ is also
NP-hard. Exact solution methods developed for MCLP are not
applicable to MDCPδ unless they are adapted to handle its specific
features. Moreover, even medium size instances of the problem
addressed in this work are practically intractable by such solution
techniques. Therefore, instead of solving MDCPδ exactly, a Lagran-
gian relaxation to obtain a valid upper bound for MDCPδ is
derived.

Proposition 3.1. Let W ðδÞ be an upper bound for MDCPδ, if
W ðδÞoW tot, then the coverage radius δ is a valid lower bound on
the optimal value of TDP.

Proof. Let Xδ be the optimal solution to MDCPδ with correspond-
ing optimal objective function value given by WðδÞ. It is easy to
check that Wðd0ÞrWðd1Þ⋯rWðdkmax Þ, where dkAD, kAK . Now
we establish a more precise relationship between the optimal
solutions of problems MDCPδ and TDP.

Let kn be the smallest index kAK such that Wðdkn Þ ¼W tot and
exactly p territories are created. Note that territory balance
constraints are also present in the MDCPδ formulation. On the
other hand, for Xdkn

¼ ðxnijÞ , the optimal solution to MDCPdkn
, TDP

constraints of unique assignment (2) are satisfied since

∑
iAV

∑
jA Jd

kn
ðiÞ
w1

j x
n

ij ¼ ∑
jAV

w1
j ∑
iA Id

kn
ðjÞ
xnij

0
@

1
A¼W tot;

) ∑
jAV

w1
j ∑
iA Id

kn
ðjÞ
xnij

0
@

1
A¼ ∑

jAV
w1

j ;

) ∑
iA Id

kn
ðjÞ
xnij ¼ 1:

Notice that xij ¼ 0, 8 i=2 Idkn ðjÞ, then we have that

∑
iAV

xnij ¼ ∑
iA Id

kn
ðjÞ
xnij ¼ 1;

) ∑
iAV

xnij ¼ 1:

Therefore, as dkn is the smallest coverage radius in D such that
MDCPdkn

solution satisfies all TDP constraints, it follows that dkn is
the optimal value of TDP and Xdkn

its optimal solution.
Finally, it can be noticed that for all kAK such that krkn, the

radius dk is a valid lower bound for TDP and further,
WðdkÞrW tot; 8krkn; kAK . Notice that in the general case, as
W ðδÞ is an upper bound on the optimal value of MDCPδ,
W ðδÞrW tot implies that WðδÞrW tot and case 3 holds for any
TDP relaxation. □

Next, we detail the relaxation of MDCPδ used in order to obtain
the upper bound W ðδÞ, for a given coverage radius δ.

3.2. Lagrangian relaxation of MDCPδ

In this section we propose a relaxation of MDCPδ which
consists of relaxing the assignment constraints (8) in a Lagrangian
fashion, i.e., incorporating them into the objective function with
the corresponding multipliers λAR

jV j
þ . For surveys on Lagrangian

relaxation, the reader is referred to Guignard [19], Geoffrion [18]
and Fisher [12,13]. The resulting model is

ðLδðλÞÞ

Maximize ZLRðλÞ ¼ ∑
iAV

∑
jA JðδÞ

wan

j xij þ ∑
jAV

λj 1� ∑
iA IðδÞ

xij

 !

¼ ∑
jAV

λj þmax ∑
iAV

∑
jA JðδÞ

ðwan

j �λjÞxij
( )

subject to ∑
iAV

xiirp;

∑
jA JδðiÞ

wa
j xijZ ð1�τaÞμaxii; iAV ; aAA;

∑
jA JδðiÞ

wa
j xijrbðδ;aÞi xii; iAV ; aAA;

xijAf0;1g; iAV ; jA JδðiÞ:

The Lagrangian problem LδðλÞ consists of maximizing a
weighted sum over the variables xij; i; jAV , under constraints of
minimum and maximum territory capacity and the selection of p
territory centers. Notice that the model LδðλÞ can be decomposed
into jV j independent subproblems, one for each iAV , as follows:

ðTSKPiÞ

Maximize υiðλ; xÞ ¼ ∑
jA JδðiÞ

ðwan

j �λjÞxij ð13Þ
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subject to ∑
jA JδðiÞ

wa
j xijZ ð1�τaÞμaxii; aAA; ð14Þ

∑
jA JδðiÞ

wa
j xijrbðδ;aÞi xii; aAA; ð15Þ

xijAf0;1g; jA JδðiÞ: ð16Þ
Each of these subproblems can be seen as a knapsack problem

with double constraints of minimum and maximum capacity, or as
a bidimensional knapsack problem with additional constraints
(14). We denote this subproblem as Two-Sided Knapsack Problem
(TSKP). Hence, to solve LδðλÞ , for each iAV its corresponding
subproblem TSKPi is solved. Then, in order to meet constraint (9),
the indices in the set V are sorted in non-increasing values of
TSKPi, that is,

υi1 ðλ; xÞZυi2 ðλ; xÞZ⋯ZυijV j ðλ; xÞ:

Then, the first pn indices are chosen as territory centers, where pn

is given as follows:

pn ¼minfp;maxfr : υjr ðλ; xÞ40gg:
The idea behind this is to choose the indices with the best
evaluation of its corresponding subproblem TSKPiðλÞ. Therefore,
the optimal solution to LδðλÞ consists of the territories with center
in fi1; i2;…; ipn g and the assignments of the BUs to these territories
given by the solution of the pn associated subproblems TSKPiðλÞ.

Thus, for a given vector of multipliers λAR
jV j
þ , an upper bound

for MDCPδ is computed by means of the procedure described
above. As it is well known, the best Lagrangian bound is obtained
by solving the Lagrangian dual problem:

ðLDδÞ
W ðδÞ ¼ min

λARjV j
þ

LδðλÞ;

which is solved by subgradient optimization.

3.3. Subgradient optimization algorithm

In this phase a classical subgradient optimization is performed
[20,21]. Given an initial vector λ0, a sequence fλkg is generated by
the rule:

λkþ1
j ¼maxf0; λkj �θks

k
j g; j¼ 1;…;n;

where sk is a subgradient at λ¼ λk and θk40 is the step size,
calculated through the commonly used formula:

θk ¼
αkðηk�ηlbÞ

Jsk J2
;

with αk being a scalar satisfying 0oαkr2 . In practice, this
parameter is initialized to α0 ¼ 2 and its value is halved if the
upper bound fails to improve after a certain number of consecutive
iterations; ηk is the upper bound at iteration k; ηlb is the lower
bound available at iteration k usually obtained by applying a
primal heuristic for MDCPδ.

The subgradient vector at iteration k is given by sk ¼ ½skj �, with

skj ¼ 1� ∑
iA IδðjÞ

xnij; jAV ;

where xnij is the solution of the Lagrangian problem LδðλÞ .
In practice [15,16,33], multipliers vector λARjV j

þ is commonly
initialized with random values in the range ½0;10�, while the
stopping criteria are the following:

� θr0:00001
� αr0:00001

� ηk�ηlbo1
� If ⌊ηk⌋ fails to improve after m consecutive iterations.
� Maximum number of iterations.

A summary of the subgradient procedure implemented is
depicted in Algorithm 1.

Algorithm 1. Subgradient optimization procedure.

Input: P≔A TDP instance;
δ≔Covering radius;
T≔Stopping criteria;
t≔Number of iterations without improvement after which
the parameter α is halved;

Output: W ðδÞ≔Best upper bound for MDCPδ;
ηlb’�1 ηk’þ1 ;

λ0j ’random½0;10�; jAV;
k’0 ;
count’0 ;
Terminate’false;
while (not Terminate) do

Solve LδðλkÞ;
if ðLδðλkÞoηkÞ then
ηk’LδðλkÞ;

else
count’countþ1;
if (count¼t) then
α’α

2;
count’0;

end if
end if
Apply the primal heuristic to obtain a lower bound lb;
if ðlb4ηlbÞ then
ηlb’lb;

end if

skj ’ 1� ∑
iA IδðjÞ

xkij

 !
; jAV;

θk’
αkðηk �ηlbÞ

J sk J 2 ;

λkþ1
j ’maxf0; λkj �θkskj g; jAV;

k’kþ1;
if (Stopping criteria T is not satisfied) then
Terminate’true;

end if
end while
W ðδÞ’ηðk�1Þ;

return W ðδÞ;

3.3.1. Primal heuristic
Note that, given a vector of multipliers λAR

jV j
þ , the solution of

LδðλÞ may not be feasible for MDCPδ. Since single assignment
constraints are relaxed, an LδðλÞ solution may present multiple
assignments of the BUs to the territories whereas there might be
BUs that were not assigned to any territory. Therefore, at the inner
iterations of subgradient optimization, primal bounds for MDCPδ
are heuristically built from LδðλÞ by repairing infeasibility through
the following steps:

1. This stage eliminates the multiple assignments of BUs (if they
exist) by considering the unbalances (with respect to each activity
measure) that produce the removal of BUs from the territories. Let
XL ¼ ðXcði1Þ;Xcði2Þ…;Xcðipn ÞÞ be the optimal solution to LδðλÞ,
λAR

jV j
þ , where XcðiÞ represents the set of BUs that belong to
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territory with center in iAV and let IL ¼ ði1; i2;…; ipn Þ be the set of
territory centers selected in the Lagrangian solution.
For each jAV , the set ILj denotes the territory centers associated to

basic unit j, i.e., ILj ¼ fiA IL : xij ¼ 1g. If jILj j41, which means that
basic unit j has been assigned to more than one territory, a
function fi is evaluated for each iA ILj . This function quantifies the
impact on the feasibility with respect to constraints (10), when
the basic unit j is subtracted from the territory i and is calculated
as follows:

f i ¼min
aAA

fwaðXcðiÞÞ�wa
j �ð1�τaÞμag; ð17Þ

where waðXcðiÞÞ ¼∑jAXcðiÞw
a
j is the size of the territory XcðiÞ with

respect to the activity aAA, whilewa
j ; τ

a and μa are parameters of

TDP model described in Section 2. The territory that keeps the
basic unit j is selected under the following criteria:
� If miniA ILj

ff igZ0, it means that each territory is feasible
when BU jAV is eliminated from XcðiÞ and therefore, the
territory with the lowest evaluation in function (17) is
selected to keep the basic unit j, i.e., in ¼ arg miniA ILj

ff ig.
� If miniA ILj

ff igo0, it means that at least one territory

becomes infeasible with respect to the minimum activity
size ð1�τaÞμa for some activity aAA. Notice that when
assigning basic unit j to a single territory center from ILj ,
those territories that do not satisfy balance constraints (10)
are not considered in the primal solution of MDCPδ since
they become infeasible when j is removed from them. Then,
it is convenient to select the territory that provides the
greatest covered demand among those territories for which
f i40 to keep the basic unit j, i.e., in ¼ arg maxiA ILj

ff i : f io0g.
2. Once that multiple assignment has been eliminated, we have a

feasible solution for MDCPδ by considering only those terri-
tories that meet balance constraints (10). It can be noticed that
subtracting basic units from territories in the previous phase
may lead to unbalanced territories with respect to some
activity measure and therefore, such territories could not be
included in a feasible solution for MDCPδ . Additionally, the
Lagrangian problem solution may have unassigned BUs. Hence,
a second phase that improves the actual feasible solution is
applied as follows:

� Let U be the set of unassigned basic units in the Lagrangian
solution. The idea at each iteration of this stage is to assign
each jAU to that territory with the highest residual capacity
among both activity measures. This is performed through
these steps:

○ Territories in XL are ranked by non-increasing order
according to their residual capacity denoted as ri, iA IL ,
which is calculated as follows:

ri ¼max
aAA

fbðδ;aÞi �waðXcðiÞÞg;

being fXcði1Þ;Xcði2Þ…;Xcðipn Þg the ordered set in such a way

that rði1ÞZrði2ÞZ⋯Zrðipn Þ.
○ Basic unit j is assigned to the territory in the ordered set

with the lowest index inA IL such that din joδ and satisfies

wa
j rbðδ;aÞ

in
�waðXcðinÞÞ; aAA: ð18Þ

Relationship (18) assures the compliance of constraints
(11). If there is no territory with these characteristics, the
basic unit j is not assigned.

At the end of the primal heuristic, we have a feasible solution and
therefore, a primal bound for the MDCPδ, which may sometimes
be feasible even for the TDP in the case that all BUs are assigned to
exactly p territories which satisfy balance constraints (10).
Algorithm 2 summarizes the primal heuristic.

Algorithm 2. Primal heuristic.

Input: P≔A TDP instance;
δ≔Covering radius;
IL ¼ fi1; i2;…; ipn g≔Set of territory centers selected in the
Lagrangian solution;
XL ¼ fXcði1Þ;Xcði2Þ;… Xcðipn Þg≔Solution of Lagrangian problem

LδðλÞ;
U≔Set of unassigned BUs in the solution of LδðλÞ;

Output: Xf:¼Feasible solution (lower bound) for MDCPδ;

Xf’ϕ;
XcðiÞ≔Territory with center in iAV;
for all jAV do

ILj’fiAV : xij ¼ 1g;
if ðjILj j41Þ then
for all iA Ij do
f i’min

aAA
fwaðXcðiÞÞ�wa

j �ð1�τaÞμag;
end for
if ðmin

iA ILj

ff ig40Þ then

in’arg min
iA ILj

ff ig;

for all iA ILj such that ia in do
XcðiÞ’XcðiÞ\fjg;

end for
else
in’arg max

iA ILj

ff i : f io0g;

for all iA ILj such that ia in do
XcðiÞ’XcðiÞ\fjg;

end for
end if

end if
end for
for all jAU do

for all iA ILdo

ri’max
aAA

fbðδ;aÞi �waðXcðiÞÞg;
end for

in’arg max
iA IL

fri : wa
j r bðδ;aÞi �waðXcðiÞÞ4dijrδ; aAAg;

XcðinÞ’XcðinÞ [ fjg;
end for
for all iA IL do

if ðwaðXcðiÞÞZ ð1�τaÞμa; aAAÞ then
Xf’Xf [ XcðiÞ;

end if
end for
return Xf;

3.4. The dual bounding scheme

In this section we present the bounding scheme for the TDP.
The idea underlying this procedure is to carry out a search among
the elements of the set D associated with the distance matrix in
order to find the best lower (dual) bound on the optimal value of
TDP. The procedure solves a series of Lagrangian duals W ðdkÞ and
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seeks for the maximum coverage radius dkn that satisfy the
conditions of Proposition 3.1, thus obtaining the best dual bound
from the covering radii candidates.

The proposed LB scheme is based on a binary search over the
set D. As a preprocessing step, this set D can be further reduced by
the following test:

� Elimination by lower bound: If LB is a valid lower bound for TDP,
then the set fd0; d1;…; dkl g, where klAK is the largest index
such that dkl oLB can be discarded.

� Elimination by upper bound: If UB is a valid upper bound for
TDP, then the set fdku ; dku þ1;…; dkmax g, where kuAK is the
smallest index such that dku 4UB can be discarded.

Algorithm 3 summarizes the dual bounding scheme for TDP.

Algorithm 3. Dual bounding scheme (DBS).

Input: P≔A TDP instance;
D ¼ fd0; d1;…; dkmax g≔Ordered set of covering radii;

Output LB:¼Lower (dual) bound on the optimal value of TDP;
a’1;
b’kmax;
while (aob) do

k’⌊ðaþbÞ
2 ⌋;

Solve LDdk and evaluate W ðdkÞ;
if (W ðdkÞoW tot) then
a’kþ1;

else
b’k�1;

end if
end while
LB’da;
return LB;

3.5. Pre-processing for DBS

In this section, a pre-processing phase which significantly reduces
the computational effort of the binary search by obtaining both initial
lower and upper bounds is developed. In addition to this, a relative
tolerance ε for the size of the exploring interval is used.

To obtain an initial lower bound, a sequential search among the
set D is performed which solves, at each iteration, the following
relaxation of MDCPδ:

ðMDCPδ�RÞ

ϕðδ; xÞ ¼Maximize f ðxÞ ¼ ∑
iAV

∑
jA JδðiÞ

w1
j xij; ð19Þ

subject to ∑
iAV

xiirp; ð20Þ

xijAf0;1g; iAV ; jA JδðiÞ: ð21Þ

Once again, it can be noticed that MDCPδ�R is separable in the
set V and it can be easily solved by calculating for each iAV the
maximum demand ciðδÞ that can be covered from i within a radius
δ as follows:

ciðδÞ ¼ ∑
jA JδðiÞ

w1
j :

Finally, to satisfy constraint (20), the indices in V are sorted by
non-increasing order of the values ciðδÞ and the first p indices are
chosen to calculate the amount of effective demand Cef ðδÞ that can

be covered by p territories within a maximum distance δ:

Cef ðδÞ ¼ ∑
p

r ¼ 0
cir :

Therefore, the optimal value of MDCPδ�R is given by Cef ðδÞ which, at
the same time, is an upper bound for MDCPδ . Then, using Proposition
3.1 we determine if δ is a valid lower bound for the TDP. The purpose
of the sequential search is therefore to find the best initial lower
bound (i.e., the largest covering radius for which Cef ðδÞrW tot). The
procedure for solving MDCPδ�R is outlined in Algorithm 4.

Algorithm 4. pre_processing ðP;DÞ.

Input: P≔A TDP instance;
D ¼ fd0; d1;…; dkmax g≔Ordered set of covering radii;

Output: k1≔Index of the initial upper bound dk1 ;
t’0;
δ’dt;
Cef ðδÞ’0;
ciðδÞ’0; 8 iAV;
while ðCef ðδÞrW totÞ do

for all iAV do
ciðδÞ’ ∑

jA JδðiÞ
w1

j ;

end for
Order the indices in V in such a way that

ci1 ðδÞZ⋯ZcijV j ðδÞ;

Cef ðδÞ’ ∑
p

r ¼ 0
cir ðδÞ;

t’tþ1;
δ’dt;

end while
k1’t�1;
return k1;

A valid initial upper bound for TDP is obtained from a known
heuristic developed by Ríos-Mercado and Fernández [36].
Algorithm 5 states the dual bounding scheme DBS_P.

Algorithm 5. DBS_P ðP;DÞ.

Input: P≔A TDP instance;
D ¼ fd0; d1;…; dkmax g≔Ordered set of covering radii;

Output LB:¼Lower (dual) bound on the optimal value of TDP;
k1≔pre_processingðÞ; {Compute initial lower bound dk1 }
k2≔R�GRASPðÞ; {Compute initial upper bound dk2 }
a’k1;
b’k2;

while db �da
da

Zε
� �

do

k’⌊ðaþbÞ
2 ⌋;

Solve LDdk and evaluate W ðdkÞ;
if ðW ðdkÞoW totÞ then
a’kþ1;

else
b’k;

end if
end while
LB’da;
return LB;

4. Computational evaluation

In this section, we provide computational results for the dual
bounding scheme we developed for the TDP. Our overall objective
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is to assess if DBS is a promising methodology for TDP. More
specifically, the following issues are studied:

(1) The effect of the pre-processing stage (providing both dual and
primal bounds).

(2) A comparison of the proposed bounding scheme with the LP
relaxation.

(3) The assessment of quality of the DBS_P bounds when tried
on medium size instances, for which optimal solutions
are known.

All the procedures have been coded in Cþþ and compiled with
the Sun Cþþ 8.0 compiler. The experimental work was carried
out on a SunFire V440 computer under Solaris 9 operating system.
CPLEX 11.2 callable libraries [25] were used to solve subproblems
TSKPi.

Randomly generated instances based on real-world data on
planar graphs provided by the industrial partner were used. This
data set is taken from [36]. In that work, full details on how the
instances are generated can be found. Each instance topology was
randomly generated as a planar graph in the [0, 500]� [0, 500]
plane. The set D has then n2 different distances within the range
[0, 500]. A tolerance τa ¼ 0:05; aAA, with respect to each activity
measure was considered. The particular characteristics of the
instances used are described in each experiment.

With regard to the subgradient procedure for solving LδðλÞ, the
algorithmic rules that were considered are the following:

� Start with α¼ 2 and halve its value if the dual bound fails to
improve after 15 consecutive iterations.

� Stopping criteria:
○ Maximum iteration number (600 iterations).
○ If the current absolute value of the current difference

between the upper and lower bounds is less than one unit
(i.e., ub� lbo1). As MDCPδ is an integer programming
problem, a difference less than one indicates that optimality
has been achieved since the decision variables coefficients
in the objective function are integer-valued. The optimal
solution to the problem is given by the current lower bound.

○ If λi ¼ 0; 8 iAV . The optimal solution to LDδ has been
obtained, but a duality gap may exist. The best available
solution is given by the current lower bound.

○ If lb¼W tot. The total assignment of BUs has been achieved
by a primal solution of MDCPδ then a feasible solution or
upper bound for TDP has been found.

○ If uboW tot. Proposition 3.1 is met and a valid lower bound
for TDP has been found.

○ If ⌊ub⌋ fails to improve after 30 consecutive iterations.
○ If θr0:00001. A duality gap exists and the best available

solution is given by the current lower bound which is
provided by the primal heuristic.

4.1. Comparing DBS and DBS_P

The improvement produced when a pre-processing is applied
to DBS is first addressed. As stated in Section 3.5, initial upper and
lower bounds are easily generated to reduce the initial set of
coverage radii to be explored. In addition, the binary search
procedure is executed until a relative gap ε (i.e., percentage
difference) between the lowest and greatest values in the set of
candidate radii is reached. In order to balance the trade-off
between solution time and quality we set ε¼ 0:001 (i.e., 0.1%) in
our computational study.

Three instance sets defined by ðn; pÞAfð60;4Þ; ð100;6Þ; ð500;10Þg
were generated. For each of these sets, 15 different instances were

generated and tested using both binary search schemes. Table 1
compares DBS and DBS_P. The first column indicates the instance
size tested. The second and third columns display the average CPU
time required per instance under each scheme (time required for
obtaining initial (lower and upper) bounds for TDP is also
included). The fourth column shows the percentage reduction by
DBS_P on the total execution time. Similarly, the last three
columns show the information about the number of radii that
were tested.

Results in Table 1 indicate that modified binary search DBS_P
has a significant impact in the execution times, which are reduced
up to 74.1%. It can be noticed that this improvement relies on the
number of explored radii, which reaches a decrease of over 50%
using pre-processing on tested instances. It can be concluded that
providing initial upper and lower bounds as a preprocessing
strategy pays off in terms of computational effort.

4.2. Evaluation of DBS_P bounds

This part of the work focuses on the study of the quality of the
obtained bounds. As it was mentioned before, this dual bounding
scheme is the first known to date for commercial territory design.
For this reason, we make a comparison with bounds based on the
LP relaxation. Additionally, the DBS_P bounds are compared with
respect to optimal solutions for medium size instances (60 and
100 BUs instances).

4.2.1. Comparison with the LP relaxation
A comparison between DBS_P and the LP relaxation (LPR)

lower bounds for TDP is carried out. A set of 30 instances of each
size ðn; pÞAfð500;10Þ; ð1000;20Þ; ð2000;20Þg was tested. There are
several methods available through CPLEX for solving the LP
relaxation. We made some preliminary testing and found that
Sifting Algorithm [25] was the most efficient method in this case.

Results of the empirical comparison are summarized in Table 2
where the first column indicates the instance size, the second
column displays the average relative deviation (RD) between the
DBS_P and LPR bounds, and the third and fourth columns show
the average running times for both LPR and DBS_P bounding
schemes, respectively. This gap represents the relative improve-
ment of the bound provided by the dual bounding scheme
(lb(DBS_P)) with respect to the bound obtained by the linear

Table 1
Performance of DBS and DBS_P procedures.

Size
ðn; pÞ

Time (s) Explored radii

DBS DBS_P Improvement
(%)

DBS DBS_P Improvement
(%)

(60, 4) 1306.39 513.67 60.7 12 6 50.0
(100, 6) 2812.29 694.75 63.3 12 6 50.0
(500, 10) 11811.97 3058.41 74.1 17 6 64.7

Table 2
Comparison of LPR and DBS_P bounding schemes.

Size ðn;pÞ RD (%) Time (s)

LPR DBS_P

(500, 10) 252.46 148.9 2352.4
(1000, 20) 259.03 1028.1 5719.8
(2000, 20) 346.16 6728.1 13 548.3
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programming relaxation (lb(LPR)). It is computed as

RD¼ 100
lbðDBS_PÞ� lbðLPRÞ

lbðLPRÞ

� �
:

As it can be observed, the average computation times of DBS_P
are significantly larger than those reported by the resolution of the

linear problem. However, the effort invested by DBS yields a
significant improvement over the quality of the LPR bound. The
average RD ranges from 252.46% to 346.16% which is remarkably
high. This superiority in the quality of the bounds generated by
LPR and DBS_P is better depicted in Fig. 1 where the values of both
bounds per instance and size configuration are shown.
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Fig. 1. Comparison of LPR and DBS_P lower bounds.
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4.2.2. Comparison with an improved LP bound
From the previous experiment, it was clear that the better

quality of the DBS_P bound came at a cost of a higher computa-
tional effort. Therefore, we investigate the improvement of the LPR
bound when cast within a branch-and-bound (B&B) framework. As
it is known, the B&B method iteratively improves its dual and
primal bounds until optimality is reached. The main idea behind
this experiment is to allow the B&B as much time as the

Table 3
Relative improvement of DBS_P with respect to
ILPR.

Size ðn;pÞ RD (%)

(500, 10) 255.13
(1000, 20) 255.30
(2000, 20) 342.91
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Fig. 2. Comparison of B&B and DBS_P bounds.

M.G. Elizondo-Amaya et al. / Computers & Operations Research 44 (2014) 193–205202



Author's personal copy

computation of the DBS_P bound task, and make a comparison of
the DBS_P and the improved LPR bound (ILPR) under the same
computational effort.

This experiment was carried out on 15 instances of each size
configuration ðn; pÞAfð500;10Þ; ð1000;20Þ; ð2000;20Þg. Table 3 indi-
cates the relative deviation (computed as in the previous test)
between both ILPR and DBS_P bounds. The most important result
in this experiment is that for all tested instances, the B&B method
did not improve significantly the dual bound obtained at the root
node, that is, the LPR bound. In other words, considering the same

execution times for both strategies, the exact solution procedure
failed to improve the linear relaxation while the proposed scheme
is still better than the ILPR bound showing average relative
deviations from 255.13% to 342.91%. Fig. 2 shows the individual
bounds values, per instance and size configuration, for each
bounding scheme.

4.2.3. Comparison with optimal solutions
Finally, the quality of the proposed DBS_P bound with respect

to known optimal solutions is assessed. To this end, we solved
60- and 100-node instances by B&B implemented by CPLEX
(20 instances on each set). This is the largest size that can be
optimally solved in reasonable times.

Results are summarized in Table 4. For each bounding proce-
dure a relative optimality gap is computed. This gap gives the
relative deviation on how far is the lower bound (lb) from the
optimal solution (opt) and is defined as Gap¼ 100ððopt� lbÞ=optÞ.
As it can be seen from the table, the DBS_P scheme provides a
more attractive choice than its LPR counterpart, confirming the
results from previous experiments. In particular, it was observed
that 90% of the 60-node instances had optimality gaps of less than
10% under the DBS_P scheme. Fig. 3 displays the LPR and DBS_P
lower bound values as well as the optimal solution values of the
different instances in each set (n,p).

Table 4
Comparison of DBS_P and LPR bounds vs. optimal solutions.

Size ðn; pÞ Gap (%)

DBS_P LPR

(60,4)
Best 0.10 59.94
Average 5.66 66.59
Worst 13.15 71.46

(100,6)
Best 2.34 60.84
Average 10.50 67.62
Worst 16.58 72.83

 0

 50

 100

 150

 200

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

V
al

ue
s

Instances

n=60, p=4

Optimal solution
DBS−P bound

LPR bound

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

V
al

ue
s

Instances

n=100, p=6

Optimal Solution
DBS−P bound

LPR bound

Fig. 3. Comparison of DBS_P bounds and optimal solutions.
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5. Conclusions

In this paper we have presented a dual bounding scheme for a
territory design problem. This problem includes compactness and
balancing among territories as planning criteria. In particular, the
problem addressed has been intractable through exact solution
methods for real-world instance sizes, therefore different heuristic
approaches have been proposed for this problem. However, to the
best of our knowledge, there are no previous work on generating
dual bounds for TDPs in general. As it is well known, the
computation of dual bounds is important for assessing the quality
of primal solutions, and moreover, dual bounds can be useful in
the design of exact solution methods.

The proposed bounding procedure exploits the similarities of
methodologies for solving the well known capacitated p-center
problem. In this paper we extended the ideas underlying such
methodologies and proposed an adaptation to handle multiple
balance constraints. Lower bounds for TDP are obtained by
performing a binary search on the elements on the matrix of
distances between basic units. In each iteration of the procedure,
the resolution of a Lagrangian dual from a coverage location
problem is considered. This allows to evaluate, for a given cover-
age radius, if it is possible to assign all the BUs in a feasible way
into p territories. When this is not met, the explored radius
becomes a lower bound for the territory design problem.

In addition, a pre-processing technique to speed up the
convergence of the procedure was developed. It was empirically
observed that the positive impact of this simplification reducing
up to 64.7% the number of explored radii during the binary search
procedure yields a significant decrease in computation times.
Furthermore, empirical evaluation showed that the proposed
dual bound for TDP was of considerably higher quality than
those provided by the linear programming relaxation of the
model.

There are several extensions to this work that deserve atten-
tion. For instance, it was observed that the bottleneck in the
overall execution time of the procedure is found at solving the
TSKP subproblems derived from the Lagrangian relaxation of the
maximum demand covering problem. Therefore, the derivation of
efficient solution techniques for TSKP could greatly improve the
efficiency of the proposed dual bounding scheme. To the best of
our knowledge, this is a variation of the Knapsack Problem that
has not been addressed before.

The study of other related location problems that can be
used as auxiliary problems in the bounding scheme may also be
worthwhile exploring as they could provide different dual
bounds for TDP. For instance, the location minimum set covering
problem (LSCPδ) seeks to minimize the number of territories that
cover the total demand subject to assigning the BUs within a
given radius δ.

A natural extension is to exploit the proposed bounding scheme
for developing exact solution methods for TDP. Lagrangian heuristics
form a wide family of methods that work well in finding efficient
solutions for many integer programming problems. As the DBS_P
procedure, these methods use a Lagrangian relaxation of the problem
at hand to obtain easily solved subproblems and approximately
solves the Lagrangian dual through an iterative optimization scheme.
In this process, some Lagrangian (dual) information is used as an
input to guide the construction of feasible solutions which are then
submitted to local improvement. The Lagrangian heuristic is then
embedded into a branch-and-bound scheme that yields further
primal improvements. This B&B scheme can either be an exact
method or a fast heuristic. Although our bounding scheme relaxes
an auxiliary problem instead of the TDP, the DBS procedure can be
extended to a Lagrangian heuristic framework to improve the primal
solutions obtained during the subgradient optimization.
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