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a b s t r a c t

A territory design problem motivated by a bottled beverage distribution company is addressed.

The problem consists of finding a partition of the entire set of city blocks into a given number of

such as territory compactness, territory balancing with respect to each of the block activity measures,

and territory connectivity, meaning that there must exist a path between any pair of units in a territory

totally contained in it. In addition, there are some disjoint assignment requirements establishing that

some specified units must be assigned to different territories, and a similarity with existing plan

requirement. An optimal design is one that minimizes a measure of territory dispersion and similarity

with existing design. A mixed-integer linear programming model is presented. This model is unique in

the commercial territory design literature as it incorporates the disjoint assignment requirements and

similarity with existing plan. Previous methods developed for related commercial districting problems

are not applicable. A solution procedure based on an iterative cut generation strategy within a branch-

and-bound framework is proposed. The procedure aims at solving large-scale instances by incorporat-

ing several algorithmic strategies that helped reduce the problem size. These strategies are evaluated

and tested on some real-world instances of 5000 and 10,000 basic units. The empirical results show the

effectiveness of the proposed method and strategies in finding near optimal solutions to these very

large instances at a reasonably small computational effort.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The Territory Design Problem (TDP) may be viewed as the
problem of grouping basic units into subsets according to specific
planning criteria. These subsets are known as territories. There
are some other spatial constraints as part of the geographic
definition of the problem. Depending on the context of the
problem, the concept ‘‘territory design’’ may be used as equiva-
lence to ‘‘districting’’. Districting is a truly multidisciplinary
research area which includes several fields such as geography,
political science, public administration, and operations research.
However, all these problems have in common the task of
subdividing the region under planning into a number of terri-
tories, subject to some capacity constraints. Indeed, territory
design problems emerge from different types of real-world
applications. We can mention pick up and delivery applications,
ll rights reserved.
waste collection, school districting, sales workforce territory
design and even some others related to geo-political concerns.
Most public services including hospitals, schools, and postal
delivery, are managed along territorial boundaries. We can men-
tion either economic or demographic issues that may be taken in
consideration for setup a balanced territory.

The problem addressed in this work is motivated by a real-
world application in the bottled beverage distribution industry.
As each territory is to be served by a single resource, it makes
sense to use some planning criteria to balance the quantity of
customers, product demand, and workload required by the dis-
patchers or truck drivers to cover each territory. Moreover, it is
often required to balance the demand among the territories in
order to delegate responsibility fairly. To this end, the firm wishes
to partition the set of city blocks or basic units (BUs) into disjoint
territories that are suitable for their commercial purposes.

This combinatorial optimization problem is NP-hard [1]. To
the best of our knowledge, the TDP version studied in this
problem has not been tackled before. Related versions have been
studied, though. State-of-the-art exact methods can solve
instances of some simplified models of around 100–150 BUs.

www.elsevier.com/locate/omega
www.elsevier.com/locate/omega
dx.doi.org/10.1016/j.omega.2012.08.002
dx.doi.org/10.1016/j.omega.2012.08.002
dx.doi.org/10.1016/j.omega.2012.08.002
mailto:roger.rios@uanl.edu.mx
mailto:roger@yalma.fime.uanl.mx
mailto:fabian.lopez@arcacontal.com
dx.doi.org/10.1016/j.omega.2012.08.002
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Typical real-world instances are very large and intractable by
exact methods. There has been some heuristic approaches for
commercial TDPs. For instance, Rı́os-Mercado and Fernández [2]
developed a Reactive Greedy Randomized Adaptive Search
Procedure (GRASP) for a problem similar to ours; however, they
measure territory dispersion based on the objective function
of a p-Center Problem, and they do not consider the disjoint assign-
ment constraints nor similarity with exiting plan. In our case, we are
measuring dispersion by means of a function from a p-Median
Problem. This of course leads to a different structure and makes
previous approaches inapplicable. In addition, one of the main goals
of our work is to develop a tool that can be relatively easy to
implement in commercial off-the-shelve modeling languages and
optimizers. This is of great value to the company.

Now, when this TDP is modeled as a mixed-integer program-
ming problem, one of the main difficulties is that of the expo-
nential number of connectivity constraints. These simply cannot
be written out explicitly. On the other hand, this decision problem
can be viewed as a two-level decision problem where at the top
level one has to decide where to place territory centers (called
location level) and at a second level one has to assign BUs to
centers (called allocation level). Location–allocation approaches
to TDP have been applied before. In our case, from a practical
perspective there is a relatively fair knowledge of reasonable sites
to act as territory centers. Therefore, by assuming we have a good
representation of these centers and fix them in advance, we focus
on the allocation problem.

In this paper, we present a heuristic solution approach based
on the iterative resolution of an associated mixed-integer pro-
gramming model for the TDP aimed at obtaining high quality
solutions to large-scale instances. The algorithm consists of
iteratively solving a relaxed MILP model (relaxing the connectiv-
ity constraints), identifying violated constraints by solving an
easy separation problem, and adding these violated cuts to the
model. The procedure continues until no more connectivity
constraints are needed. This is similar to the exact approach
developed by Salazar-Aguilar et al. [1], except that they apply it to
the complete model solving instances of up to 100–150 BUs. In
our case, we apply this technique to the relaxed model which is
solved considerably faster allowing the solution of larger
instances. In addition, we have implemented some strategies that
allow to fix some binary variables in advance. The solution
method and algorithmic strategies were evaluated on a case
study from industry. We found that this procedure is successful
in finding good quality solutions for large-scale instances (e.g.,
5000 and 10,000 BUs) in reasonable times.

The paper is structured as follows. In Section 2 we describe the
problem. In Section 3 we present an overview of the most
relevant work on models and algorithms for territory design. This
is followed by Section 4, where the mathematical framework is
presented in detail. The proposed solution approach is fully
described in Section 5. In Section 6 we present the empirical
evaluation of the proposed approach. We wrap up the paper in
Section 7, with some conclusions and final remarks.
2. Problem description

Given a set of city blocks or basic units (BUs) for delivering
bottled beverages, we need to partition this set into a given
number p of disjoint territories, where the value of p is known.
Every BU should be contained in exactly one territory. The goal of
the design is to obtain territories that are as compact as possible,
that is, the BUs in a given territory must be as close to each
other as possible. Territory connectivity is another important
planning requirement. Connectivity means that the basic units
that conform a territory have to be geographically connected. It is
easy to understand that in order to obtain contiguous territories,
explicit neighborhood information for the basic units is required.
For each BU, the following information is known with certainty:
location coordinates (from the firm GIS), and three measurable
attributes: (i) number of customers, (ii) product demand mea-
sured by the number of 12-bottle boxes, and (iii) workload
measured in time (min). The activity measure of a territory is
the total sum of the activity measure of its individual basic units.
The firm wants to design territories that are balanced (similar in
size) with respect to each of the three different activity measures
in every BU. That is, the total number of customers, product
demand, and workload assigned to each territory should be fairly
distributed among the territories. It is interesting to point out
that only a few authors consider more than one criterion
simultaneously for designing balanced territories (e.g, Deckro [3],
Zoltners [4], Zoltners and Sinha [5]).

The firm also seeks some degree of similarity with the existing
design. This is achieved by requiring that at least certain given
proportion of the current BUs assigned to each territory remain
assigned to the same territory. In a similar fashion, there are some
predefined pairs of BUs that must be assigned to different
territories. We called these disjoint assignment constraints. As
can be verified, all these features could be easily extended to
consider some territories that may already exist at the beginning
of the planning process. That means that our method should be
prepared to take the existing territories into account and then add
additional basic units to them. This modeling feature could be
applied to take into account geographical obstacles, e.g., rivers
and mountains. The problem can be summarized as follows:
partition the set V of basic units into p territories which satisfy
the specified planning criteria such as balance, compactness,
connectivity, disjoint assignment, and similarity with existing
design.
3. Overview of models and solution approaches

The recent paper by Kalcsics et al. [6] is an extensive survey on
approaches to TDP that gives an up to date state-of-the-art and
unifying approach to the topic. For a more extensive review
related to sales districting see Zoltners and Sinha [7]. Another
recent survey on districting models is the one by Duque et al. [8].
In a related issue, Mansfield et al. [9] report a preliminary study of
several companies investigating the relationships between stra-
tegies of diversification and geographic dispersion of territories
covered and structural variables relating to the number of
structural differentiations in a company, the decentalization of
decision-making and functional specialization. In this section, we
focus on reviewing the work most related to our research.

As far as commercial territory design is concerned, Vargas-
Suarez et al. [10] address a related commercial TDP with a
variable number of territories, using as an objective a weighted
function of the activity deviations from a given goal. No compact-
ness criterion was considered. A basic GRASP was developed
and tested in a few instances obtaining relatively good results.
Rı́os-Mercado and Fernández [2] studied the problem by con-
sidering compactness and contiguity but without joint assign-
ment constrains. They used the objective function of the p-Center
Problem for modeling territory dispersion. In that work, the
authors proposed and developed a reactive GRASP algorithm for
handling large instances. They evaluated their algorithm on 500-
and 1000-node instances with very good results. More recently,
Salazar-Aguilar et al. [1] develop an exact optimization scheme
for solving the TDP with double balancing and connectivity
constraints. They used their framework for solving models with
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both types of dispersion functions: the one based on the p-Center
Problem and the one based on the p-Median Problem. They
observed that models with an objective function from the
p-Median Problem were solved faster than the ones using the
objective from the p-Center Problem. Furthermore, they also
observed that solutions obtained from the relaxation of the
median-based models had a very high degree of connectivity.
Still, the largest instance they could solve for the median-based
models was about 150 BUs. Our idea is to use a similar framework
than the one they used in their work, except that we will be
focusing in the allocation level aiming at large instances. More
recently, several approaches have been developed for multiobjec-
tive versions of the commercial TDP, including both exact opti-
mization approaches [11] and metaheuristic methods [12,13].

Table 1 summarizes this overview. In the first column, the
citation is displayed. Column 2 shows the objective to be
optimized (D for dispersion, B for balancing). If more than one
criterion is shown it represents a multi-objective problem.
Column 3 shows the requirement on p (F for fixed, V for variable).
Column 4 shows the type of function used for modeling disper-
sion (p M for median-based function, p C for center-based
function, d for diameter function), where ‘‘–’’ means no dispersion
was considered. Columns 5–9 show what type of constraints or
requirements are present (B: balancing, C: connectivity, JA: joint
assignment, S: similarity with existing plan), where Y or N means
yes or no, respectively. In addition, the ‘‘B’’ column indicates
whether single (S) or multiple (M) balancing constraints are
present. The last column indicates the type of method used for
solving the problem showing (e) or (h) for exact or heuristic
method, respectively.

All of these works address both the location and allocation
decisions. Our work focus on the allocation level only. As can be
seen from the table, even though our work focus on solving the
allocation level only, it is the only work that handles both joint
assignment and similarity with existing plan requirements, in
addition to the other common constraints. As it will be seen later,
our solution methodology is heuristic in nature; however, we
have empirically shown the solution is relatively close to the
optimal solution, and the model is solved significantly faster
which allows to handle very large-scale instances. There are
certainly other works in different applications of territory design
that have similar structure as that of our problem; however, to
the best of our knowledge, none of these address the joint
assignment and similarity with existing plan.

There have been some studies on territory realignment that
consists of developing territory designs subject to some con-
straints that attempt to keep an existing plan to the best possible
extent. This issue have been studied in the context of political
districting [14], school districting [15], and sales territory design
[16]. In our problem, there is an interest on having a similarity, at
least partially, not with an entire existing design, but with a given
Table 1
Related work on commercial districting.

Reference (1st author) obj p D

Vargas-Suárez [10] B V –

Rı́os-Mercado [2] D F p C

Caballero-Hernández [20] D F p C

Rı́os-Mercado [21] D F d

Salazar-Aguilar [1] D F pM

D F pC

Salazar-Aguilar [11] D,B F pM

Salazar-Aguilar [12] D,B F pM

Salazar-Aguilar [13] D,B F pM
set of BUs. To the best of our knowledge, our model is the first to
consider this issue within commercial districting. There are other
territory alignments problems (e.g., Ronen [17]) that incorporate
travel time in the decision process.
4. Modeling framework

The problem is modeled by a graph G¼(V,E), where a city
block or basic unit (BU) i is associated with a node, and an edge
connecting nodes i and j exists in E if blocks i and j are adjacent to
each other. Now each node iAV has several associated para-
meters such as geographical coordinates ðcx

i ,cy
i Þ, and three mea-

surable activities. Let wi
a be the value of activity aAA¼ f1,2,3g at

node i, where a¼1, 2, and 3, refers to the number of customers,
product demand, and workload, respectively. A territory is a
subset of nodes Vk � V . The number of territories is given by the
parameter p. It is required that each node is assigned to only one
territory. Thus, the territories define a partition of V. One of
the properties sought in a solution is that the territories are
balanced with respect to each of the activity measures. Thus, let
us define the size of territory Vk with respect to activity a as:
waðVkÞ ¼

P
iAVk

wa
i , aAA. Due to the discrete structure of the

problem and to the unique assignment constraint, it is practically
impossible to have perfectly balanced territories with respect to
each activity measure. To account for this, we measure the
balance degree by computing the relative deviation of each
territory from its average size ma, given by ma ¼waðVÞ=p, aAA.
Another important feature is that all of the nodes assigned to each
territory are connected by a path contained totally within the
territory. In other words, each of the territories Vk must induce a
connected subgraph of G. As mentioned before, due to strategic or
political reasons, there are some BUs that are required to be
assigned to different territories. Let H be set that contains all pairs
of units that must be assigned to different territories, that is,
H¼ fðj1,j2ÞAV � V9j1 and j2 must be assigned to different terri-
tories g. This set will be used to represent these disjoint assign-
ment constraints.

The company is also interested in keeping certain similarity
with a subset of BUs from an existing plan. The concept of
territory realignment [14–16] considers somehow either as a
constraint or a term in the objective function a measure of
dissimilarity with respect to previous plan. In this particular case,
the company wishes to keep a similarity not with an entire
existing design but with a subset of BUs. Let Fi denote the pre-
specified subset of BUs associated to center i from an existing
plan. Then the firm wishes that the new plan assigns to the new
territory with center in i a significant proportion of the BUs from
set Fi taking into account of course the corresponding distance
measure. For instance, if two given units, say i and j belong to Fk,
preference for assigning either of this to the new territory with
B C JA S Method

N Y N N (h) GRASP

M Y N N (h) Reactive GRASP

Y Y Y N (h) GRASP

Y Y N N (h) GRASP

M Y N N (e) Branch-and-cut

(h) IQP reformulation

M Y N N (e) Branch-and-cut

(h) IQP reformulation

S Y N N (e) E-constraint & B&C

S Y N N (h) GRASP

S Y N N (h) Scatter search
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center in k should be given to the unit nearest to k. This may be
achieved by introducing a penalty term in the objective function
qij. In addition, it is required that at least certain number of these
BUs meet this assignment. This can be achieved by introducing a
corresponding constraint. These can be seen in the model below.

Finally, industry demands that in each of the territories,
blocks must be relatively close to each other. One way to achieve
this is for each territory to select an appropriate node to be
its center, and then to define a distance measure such as
D¼

Pp
k ¼ 1

P
jAVk

dcðkÞ,j where c(k) denotes the index of the center
of territory k so dcðkÞ,j represents the Euclidian distance from node
j to center of territory k. So maximizing compactness is equivalent
to minimizing this dispersion function D. All parameters are
assumed to be known with certainty. The problem can be thus
described as finding a p-partition of V satisfying the specified
planning criteria of balancing, connectivity, and disjoint assign-
ment, that minimizes the above distance-based dispersion mea-
sure and partial similarity with existing set of BUs.
4.1. MILP formulation

Indices and sets

n number of blocks (BUs)
p number of territories
i,j block indices; i,jAV ¼ f1,2, . . . ,ng
a activity index; aAA¼ f1,2,3g
k territory index; kAK ¼ f1,2, . . . ,pg
E edge set of adjacent blocks
H set of pairs of BUs that must be assigned to different

territories
Fi set of BUs that are assigned to territory with center in i

under a current design
Ni

ð ¼ fjAV : ði,jÞAE3ðj,iÞAEgÞ set of nodes which are adja-
cent to node i; iAV

Parameters

wi
a value of activity a in node i; iAV , aAA

dij Euclidian distance between i and j; i,jAV

qij weight of assigning unit j to center i equal to 0:5dij if
jAFi; 0, otherwise; i,jAV

ta relative tolerance with respect to activity a; aAA,
taA ½0,1�

Computed parameters

waðXkÞ ð ¼
P

jAXk
wa

j Þ size of set Xk with respect to a; aAA, Xk � V

ma ð ¼waðVÞ=pÞ average (target) value of activity a; aAA

Decision variables: In the original problem we are not con-
cerned with territory centers; however, we introduce binary
variables based on centers for modeling the dispersion measure

xij ¼
1 if unit j is assigned to territory with center in i; i,jAV

0 otherwise

�

Note that xii ¼ 1 implies that unit i is a territory center.
Model (TDP)

min f ðxÞ ¼
X

i,jAV

dijxijþ
X
i A V
j A Fi

qijð1�xijÞ ð1Þ

s: t:
X
iAV

xij ¼ 1, jAV ð2Þ
X
iAV

xii ¼ p ð3Þ

X
jAV

wa
j xijrð1þtaÞmaxii, iAV , aAA ð4Þ

X
jAV

wa
j xijZð1�taÞmaxii, iAV , aAA ð5Þ

X
jA[v A SNv

\S

xij�
X
jAS

xijZ1�9S9, iAV , S� V\ðNi
[ figÞ ð6Þ

xijþxihr1, iAV ðj,hÞAH ð7Þ

X
iAV

X
jAFi

xijZa9[iF
i9 ð8Þ

xijAf0,1g, i,jAV ð9Þ

Objective (1) incorporates a term that measures territory disper-
sion and a term that favors the assignment of a subset of units
from existing plan. Constraints (2) guarantee that each node j is
assigned to a territory. Constraint (3) sets the number of terri-
tories. Constraints (4) and (5) represent the territory balance with
respect to each activity measure as it establishes that the size of
each territory must lie within a range (measured by tolerance
parameter ta) around its average size. In particular, the upper
bound balancing constraints (4) also assure that if no center is
placed at i, no customer can be assigned to it. Constraints (6)
guarantee the connectivity of the territories. These constraints,
proposed by Drexl and Haase [18], are similar to the constraints
used in routing problems to guarantee the connectivity of the
routes. These constraints can be explained as follows Let
S� V\ðNi

[ figÞ, that is a subset whose BUs are not adjacent to
center i and its adjacent neighbors Ni. Note that if there is at least
one BU j in S that is not assigned to territory center i, then the
second term of the left-hand side becomes strictly less than 9S9,
making the constraint redundant. Now, when all BUs in S are
assigned to center i, then the first term on the left-hand side must
be greater than 1, that is, there must be at least one BU k

surrounding S that must be assigned to center i as well. Recur-
sively applying the same rationale to the set S [ fkg results in a
territory connected to node i. Note that, as usual, there is an
exponential number of such constraints. The disjoint assignment
is represented by constraints (7). Constraints (8) assure that at
least a minimum number of BUs from existing plan is assigned,
where a is a user-specified parameter usually set to 0.10–0.20 in
practice.

Computational complexity: This TDP is NP-hard. It is clear that
a given solution to our TDP can be checked for feasibility in
polynomial time. Now, if we consider a special case of TDP where
F ¼ |, for all iAV , and H¼ |, we are left with the regular

commercial districting problem, that is, a dictricting problem
seeking to minimize a median-based dispersion function subject
to balancing and connectivity constraints, which is known to be
NP-hard [1]. That is, the regular commercial districting problem
is polynomially reducible to our specific TDP. It follows our TDP is
NP-hard too.

Allocation model: We have attempted to solve Model TDP with
a branch-and-bound method with very limited success. While
instances of up to 150-nodes are somewhat tractable, it is no
longer possible to solve larger instances within a few hours of
CPU. The model has n2 binary variables and a very weak LP
relaxation.

The problem can be decomposed into a two-level hierarchy
problem. One can see a location level, which has to do with
placing the territory centers, and then an allocation level, which
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has to do with assigning nodes to centers. Since our aim is
to provide solutions to very large instances (in the order of
5000–10,000 nodes), we make the assumption that the set of
centers is given and focus our effort in the allocation level. Let Vc

be the set of centers. This set can be approximately obtained by
means of previous knowledge, a heuristic, or a truncated branch
and bound method. The allocation level model becomes

ðAMÞmin f ðxÞ ¼
X
i A Vc
j A V

dijxijþ
X
i A Vc
j A Fi

qijð1�xijÞ ð10Þ

s: t:
X
iAVc

xij ¼ 1, jAV ð11Þ

X
jAV

wa
j xijr ð1þtaÞma, iAVc , aAA ð12Þ

X
jAV

wa
j xijZ ð1�taÞma, iAVc , aAA ð13Þ

X
jA[v A SNv

\S

xij�
X
jA S

xijZ1�9S9, iAVc , S� V\ðNi
[ figÞ ð14Þ

xijþxihr1, iAVc ðj,hÞAH ð15Þ

X
iAV

X
jA Fi

xijZa9[iF
i9 ð16Þ

xijAf0,1g, iAVc , jAV ð17Þ

Model AM has pn binary variables. In typical location–allocation
methods (Hess et al. [19], Kalcsics et al. [6]), the allocation model to
be addressed has single balancing constraints, no contiguity con-
straints and no disjoint assignment constraints. The way this alloca-
tion problem is solved is by replacing the single balancing constraints
by a single equation (i.e., making the tolerance parameter equals to
zero) and relaxing the integrality restriction of the binary variables.
The result is a transportation problem that is solved relatively
efficiently. In this solution, which of course has perfect balance,
there might fractional variables, i.e, a variable may be partially
assigned to two or more centers. This new problem is named the
split resolution problem and need to be solved according to certain
criteria depending on the specific context. After the split resolution
has been solved, the solution obtained may no longer necessarily
satisfy the balancing constraints.

In our allocation model, we must deal simultaneously with
multiple balancing constraints, connectivity constraints, and disjoint
assignment constraints, which makes typical location–allocation
procedures not applicable. Thus instead, our goal is to deal directly
with the allocation model by developing several strategies within a
branch-and-bound framework that would allow us to solve relatively
large instances. By relaxing the connectivity constraints (14) from
Model AM, we are left with the following relaxed model:

ðAMRÞmin f ðxÞ ¼
X
i A Vc
j A V

dijxijþ
X
i A Vc
j A Fi

qijð1�xijÞ ð18Þ

s: t:
X
iAVc

xij ¼ 1, jAV ð19Þ

X
jAV

wa
j xijr ð1þtaÞma, iAVc , aAA ð20Þ

X
jAV

wa
j xijZ ð1�taÞma, iAVc , aAA ð21Þ

xijþxihr1 iAVc ðj,hÞAH ð22Þ
X
iAV

X
jAFi

xijZa9[iF
i9 ð23Þ

xijAf0,1g, iAVc , jAV ð24Þ

In the following section we describe in detail the solution procedure.
5. Solution approach

In this section we present a solution strategy for solving the
Allocation Model (AM) given by (10)–(17), one main difficulty in the
exponential number of connectivity constraints (14), which implies it
is practically impossible to write them out explicitly. Therefore, we
consider instead the relaxation AMR of AM that consists of relaxing
these connectivity constraints. The basic idea of our method is to
solve model AMR and then check if the solutions obtained satisfy the
connectivity constraints. To determine the violated connectivity
constraints, a relatively easy separation problem is solved, and these
cuts are added to model AMR. This procedure iterates until no
additional connectivity constraints are found and therefore an
optimal solution to model AM is obtained. This is guaranteed
because the separation problem for identifying violated cuts is solved
exactly. A general overview of the method is depicted in Fig. 1.

In Step 1, a branch-and-bound method is used (since we are not
relaxing the integrality requirements of the binary variables). This
approach is motivated by the fact that model AMR can be solved
optimally by current branch-and-bound methods relatively fast for
quite large instances. For instance, model AMR can be solved in
around 30 s of CPU time in a PC for 5000-node instances. In addition,
identifying and generating the violated cuts in Step 2 can also be
done in polynomial time, such that the overall procedure may be
suitable as long as the number of iterations needed to reach
optimality is not too large. The algorithm delivers an optimal
solution to model AM. Several issues are of particular interest. We
would like to investigate the empirical behavior of the method in
terms of the number of iterations/cuts required to reach optimality.
In addition, the fact we are assuming a fixed set of centers can be
further exploited to develop several algorithmic strategies like
variable fixing in Step 1. These are further elaborated below.

5.1. Algorithmic strategies for speeding up convergence
�
 Variable fixing: Eliminating assignments of relatively far units.

We proceed now to reduce the complexity of our problem by
eliminating some unnecessary binary variables xij. This idea is
based upon the fact that in an optimal solution, from a
practical standpoint it makes no sense to assign a BU that is
very far away from a given territory center. Making this
assignment will have a very negative impact on the objective
function. It is clear that theoretically one can build a patholo-
gical instance where this might be the case; however, given
the particular data distribution for this problem this never
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happens in practice. Thus, for each BU i we determine a
reduced feasible subset Ri, such that we fix xij ¼ 0 for all
jARi. For each i we have reduced the number of binary
variables from n to 9Ri9. This is done as follows. First, for each
center iAVc we sort all the remaining nodes by nondecreasing
order of dij. Let (j) denote the j-th nearest BU to i breaking ties
arbitrarily, that is diðjÞ denote the distance from BU i to the j-th
nearest BU. Then, given a user specified parameter bA ð0,1Þ
the set Ri is given by Ri ¼ fðjÞAV :

Pj
k ¼ 1 wa

iðjÞrbma for at least
one aAAg. That is Ri is formed by the nearest BUs to i such that
their accumulated sum of weights with respect to all activities
do not exceed this threshold for at least one activity. A very
large value of b implies Ri¼V, so no reduction takes place. As b
gets smaller, the number of variables fixed at 0 grows.
A relatively small value of b means only a few binary variables
will be considered (as many will be fixed at 0) over-
compromising the optimality of the solution. An issue to
investigate is precisely the sensibility and trade-off between
solution quality and computing time as a function of b.

�
 Variable fixing: Preassigning relatively close units. Applying a

similar rationale as in the previous point, it is possible to find a
set of relative close units to a given center i such that in any
optimal solution, all the units belonging to this set are always
assigned to i. Again, while one can build an example where
this might not happen, in practice we always see a consider-
able portion of relative close BUs being assigned to a center i.
To this end, we determine a set Ki such that xij ¼ 1 for all jAKi.
Given a user-specified parameter g the set Ki is given by
Ki ¼ fðjÞAV :

Pj
k ¼ 1 wa

iðjÞrgma for all aAAg. That is Ki is formed
by the nearest BUs to i such that their accumulated sum of
weights with respect to all activities do not exceed this
threshold for all activities. Here a value of g¼ 0 implies
Ki ¼ | and no reduction is applied. The larger g the larger the
number of binary variables will be fixed at 1. Again, it is
important to investigate the trade-off between solution quality
and time as a function of g.

�
 Strengthening of connectivity constraints. One way to strength

the formulation of the relaxed model is by introducing the
following constraints:

xijr
X

qANj

xiq, iAVc , jAV ð25Þ

These valid inequalities can be interpreted as follows. If BU j is
assigned to territory with center in i at least one of its
neighbors (qANj) needs to be assigned to the same territory
as that of BU j. These constraints avoid territories with just a
single BU unconnected. The motivation for this stems from the
fact that previous research [1] has shown that optimal solu-
tions of the relaxed model contain most of the unconnected
subsets S with cardinality equal to 1, that is 9S9¼ 1. As can be
seen, there is a polynomial number of these new constraints
(25), thus these can be easily added to the model without
imposing a considerable computational burden. Of course,
Step 2 of the algorithm still checks for violated constraints
with subsets of cardinality 9S941.

�
 Finding violated inequalities. Step 2 of the method can be

efficiently done in polynomial time. Let X ¼ ðX1, . . . ,XpÞ be a
design found in Step 1. For each territory k, there is an
associated subgraph induced by Xk given by Gk ¼ ðXk,EðXkÞÞ.
It is well known that finding all connected components of a
graph can be done by breadth first search (BFS) in Oð9EðXkÞ9Þ. So
we apply BFS to graph Gk and find its r connected components
ðG1

k , . . . ,Gr
kÞ, with corresponding node sets ðX1

k , . . . ,Xr
kÞ. It is clear

that r¼1 implies Gk is connected; otherwise let us assume
without loss of generality that the center of Xk, named c(k)
belongs to G1

k . Clearly, each of the remaining subsets X2
k , . . . ,Xr

k

is disconnected from the center. Each of these corresponds to a
violated constraint (14) where set Xk

q plays the role of set S in
(14). By repeating this procedure for every set Xk one can
efficiently solve this separation problem optimally and add all
found violated cuts to set C in Step 3.

�
 Forced connectivity strategy for faster convergence. Step 2 is key

for the efficiency of the proposed methods. It has been
observed that the number of iterations needed to find a
connected solution in instances of up to 5000 BUs is very
reasonable. However, for larger instances up to 10,000 BUs the
computational effort grows considerable. The main cause for
this is that it takes a significant large amount of iterations to
converge. This stems from the fact that the combinatorial
nature of all possible unconnected subsets makes the algo-
rithm find and add a large number of different cuts. Therefore,
we have implemented a heuristic strategy that can be
employed as part of the method when faced with large-scale
instances.

�
 To motivate this strategy, it is important to note that if we

keep track of a single BU throughout the execution of the
algorithm, it can happen that this node may or may not belong
to an unconnected subset in the following iteration. In many
cases, an oscillating behavior between being part of an
unconnected subset and being part of the connected territory
is followed by many of these nodes. Therefore to avoid this
nasty behavior, instead of solving the AMR model we add a
penalty term to the objective function that would favor the
assignment of BUs that are already found to belong to a
connected territory. The basic idea of this strategy is to take
advantage of the connectivity information from a given itera-
tion to attempt to avoid the oscillating behavior expecting to
reduce at every iteration the number of BUs that belong to
unconnected subsets.

�
 Let us define Zt as the number of BUs that are disconnected at

iteration t. This parameter is dynamic because the number of
disconnected BUs changes at each iteration. In fact, it is
expected that this parameter Zt will tend to zero as the
number of iterations grows. Let Ui

t be the set of BUs that are
connected to territory with center in i at iteration t. Then we
add a term to the objective function (18) as follows:

Minimize gðxÞ ¼ f ðxÞþd
X
iAVc

X
jAUt

i

rijð1�xijÞ=ðZtþ1Þ ð26Þ
�
 In this added term, a penalty rij ¼ dmax
�dij, where dmax

¼

maxijfdijg implies closer assignments are preferred, dividing
by Ztþ1 avoids division by zero and makes the preference of
the assignment of already connected units stronger as the
number of iterations grows, and parameter d allows the user to
control the weight of this added term with respect to the
original objective function. Naturally, setting d¼ 0:0 implies
deactivation of this strategy.
6. Empirical evaluation

We implement our model on X-PRESS MIP Solver from FICOTM

(Fair Isaac, Dash Optimization before). The method was executed
on a PC with 2 Intel Cores at 1.4 GHz and Win X64 operating
system. For evaluation the proposed method, we use some real-
world instances of 5000 and 1000 BUs and 50 territories. In all
experiments we set ta ¼ 0:10 for all aAA and a relative optimality
gap of 0.01% as stopping criterion. These instances are available
at: http://yalma.fime.uanl.mx/�roger/ftp/tdp/.

Table 2 shows the effect on problem reduction by using
different values of parameters b and g, discussed in Section 5.

http://yalma.fime.uanl.mx/~roger/ftp/tdp/
http://yalma.fime.uanl.mx/~roger/ftp/tdp/


Table 2
Problem reduction effect.

Size (n,p) NBV (np) b g RNBV Reduction (%)

(5000, 50) 250,000 3.0 0.50 7,191 97.1

3.0 0.25 10,501 95.8

3.0 0.10 12,428 95.0

3.0 0.00 13,542 94.6

4.0 0.50 9,702 96.1

4.0 0.25 14,612 94.1

4.0 0.10 17,545 93.0

4.0 0.00 19,400 92.2

8.0 0.50 20,484 91.8

8.0 0.25 30,365 87.8

8.0 0.10 36,253 85.5

8.0 0.00 39,755 84.1

50.0 0.00 250,000 0.0

(10,000, 50) 500,000 3.0 0.50 14,615 97.1

3.0 0.25 21,227 95.8

3.0 0.10 25,027 95.0

3.0 0.00 30,202 94.0

4.0 0.50 19,968 96.0

4.0 0.25 29,609 94.1

4.0 0.10 35,352 92.9

4.0 0.00 39,244 92.1

8.0 0.50 41,531 91.7

8.0 0.25 60,810 87.8

8.0 0.10 72,214 85.5

8.0 0.00 79,693 84.1

50.0 0.00 500,000 0.0

Table 3
Results for instance (5000, 50).

b g NI Time BestSol Gap (%)

3.0 0.50 25 58 62.5027 0.0168

0.25 38 118 62.5056 0.0214

0.10 46 158 62.4972 0.0080

0.00 50 186 62.4978 0.0089

4.0 0.50 44 146 62.5011 0.0142

0.25 60 262 62.4986 0.0102

0.10 48 223 62.4972 0.0080

0.00 54 264 62.4957 0.0056

8.0 0.50 48 330 62.5101 0.0286

0.25 63 457 62.5002 0.0128

0.10 37 305 62.4976 0.0086

0.00 61 576 62.4956 0.0054

50.0 0.00 54 1930 62.4922 0.0000

Table 4
Results for instance (10000, 50).

b g d NI Time BestSol Gap (%)

3.0 0.50 50.0 305 947 124.732 0.54

0.50 10.0 76 243 124.443 0.31

0.50 5.0 97 404 124.373 0.25

0.50 1.0 120 1062 124.296 0.19

0.50 0.0 488 43,174 124.253 0.15

0.25 50.0 42 139 124.688 0.50

0.25 10.0 29 114 124.248 0.15

0.25 5.0 60 233 124.185 0.10

0.25 1.0 198 1965 124.122 0.05

0.25 0.0 156 7442 124.185 0.10

0.10 50.0 46 161 124.670 0.49

0.10 10.0 33 110 124.225 0.13

0.10 5.0 47 203 124.171 0.09

0.10 1.0 106 1026 124.122 0.05

0.10 0.0 140 4132 124.168 0.08

0.00 50.0 87 257 124.467 0.33

0.00 10.0 41 145 124.244 0.15

0.00 5.0 52 193 124.165 0.08

0.00 1.0 136 1516 124.142 0.06

0.00 0.0 94 3040 124.150 0.07
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The first two columns reflect the size of the original instance in
terms of its number of BUs, number of territories and number of
binary variables. The third and fourth column display values of
parameters b and g, respectively. The fifth column (RNBV) dis-
plays the number of binary variables after the reduction, and the
last column the relative reduction with respect to the original size
given by 100� (NBV�RNBV)/NBV. It can be seen how the number
of binary variables in the reduced problem grows as b increases
and g decreases. Note that the case b¼ 50:0 and g¼ 0:0 implies
that no reduction is applied. In summary, the strategy we adopt is
to decrease the feasible solution space to deal with a reduced
problem that can be solved more efficiently without a significant
loss on optimality. This trade-off on optimality is evaluated next.

We now apply the proposed method to instances of 5000 BUs
with 50 territories. In this experiment we set d¼ 0:0, that is no
forced connectivity strategy applied. The goal of this experiment
is to assess the trade-off between solution quality and execution
time for different values of b and g.

Table 3 displays the results for the 5000-BU instance. The first
two columns display the values of b and g used. The third and
fourth column show the number of iterations (NI) and CPU time
(s). The fifth column shows the best feasible solution found
(BestSol) and the last column displays the relative optimality
gap between this solution and the optimal solution (correspond-
ing to the row b¼ 50:0 and g¼ 0, which means no reduction
applied).

As can be seen the quality of the results is very good reporting
relative optimality gaps of less than 0.03% in less than 6 min in all
cases. Note that the strategy reported in the first row (corre-
sponding to b¼ 3:0 and g¼ 0:50) took less than a minute and
found a solution within 0.02% of optimality. The optimal solution
(last row) was found in over 30 min of CPU.

In the following experiment we assess the effect of imple-
menting the forced connectivity strategy for the solution of large
instances. Thus we apply the method for different values of the
parameters, to an instance with 10,000 BUs and 50 territories,
fixing b¼ 3:0. Table 4 and displays the results for the 10,000-BU
instance. For this instance size, it was not possible to obtain an
optimal solution. Thus, the ‘‘Gap’’ column reflects the relative
optimality gap between the primal solution found under the
given strategy and the best known lower bound for this instance.
This lower bound was obtained by applying the algorithm to this
instance with no reduction strategies into effect (that is, b¼ 50:0,
g¼ d¼ 0:0) and time limit of 22,000 CPU second as stopping
criterion. As can be seen the introduction of this strategy speeds
up the algorithm considerably. The quality of the solution is not
over-compromised. In fact, sometimes a better solution was
found in less computational effort. For instance, for the (g¼ 0)
case it was observed how the solution improved from 124.150 to
124.142 when switching from d¼ 0:0 (no forced-connectivity
strategy in action) to d¼ 1:0. This better solution was obtained
in almost 50% of the time employed by the d¼ 0:0 case. As we
penalize more, moving from d¼ 1:0 to d¼ 5:0 we can see that the
solution deteriorates slightly (less than 0.01%) but it is 90% faster.
A similar behavior is observed when we look at the g¼ 0:1 and
g¼ 0:25 cases separately. Here, the best solution 124.122 is
obtained when activating the forced-connectivity strategy with
d¼ 1:0. Finally, in the g¼ 0:50 case, it was observed for the case
d¼ 0:0, it took a large amount of time to find an optimal solution,
thus activating the strategy with dZ1:0 helped obtain feasible
designs. Overall the best solution was obtained when using
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d¼ 1:0 and g¼ 0:1 or 0.25, resulting in a relative optimality gap of
0.05%, quiet remarkable. In general, it was observed than activat-
ing the forced-connectivity strategy at d¼ 1:0 yielded better
solutions than the ones obtained when setting d¼ 0:0 in both
aspects solution quality (reducing the average relative optimality
gap from 0.10% to 0.09%) and time employed (reducing the
average CPU time from 14,447 s to 1392 s).

In order to show the behavior of the solution method in terms
of solution quality versus computational time we plot the
following measures: (i) number of unconnected BUs, (ii) number
of unconnected territories, (iii) number of cuts added, and (iv)
objective function value as a function of the iterations for several
configurations of the parameters. Figs. 2–5 display these results
for ðb,g,dÞ values of (3.0, 0.25, 50.0), (3.0, 0.25, 35.0), (3.0, 0.25,
25.0), and (3.0, 0.10, 7.0), respectively.

As it can be verified in Figs. 2 and 3, the first two runs with a
very high value on parameter d have a similar behavior. The
number of unconnected BUs, unconnected territories, and cuts
added to the model decrease with the number of iterations.
Something similar happens with the objective function value but
Fig. 2. Algorithm performance for a (10,000,50

Fig. 3. Algorithm performance for a (10,000,50
in the opposite direction. On the other two cases (Figs. 4 and 5)
with a lower value of parameter d, we have a very different
behavior. Particularly, the objective function value moves slowly
as the time grows. Indeed, this is the reason why lower objective
function values are obtained. Either way, it is important to point
out that our methodology presents an MIP model that ensures
integral assignments at each iteration. Thus, it is interesting to
verify how rapidly our heuristic implemented on the allocation
MIP model can evolve and converge on solutions with very high
degree of connectivity.

We now evaluate the method efficiency when applied to the
solution of a 10,000-BU instance with a smaller territory balance
tolerance. For this case, we set ta ¼ 0:05. This new value for
parameter significantly lower than the previous one of 0.10. Thus,
we have a very large-scale instance with a very narrow tolerance
for territory balancing. This makes the problem extraordinarily
difficult to solve. Our results are presented on Table 5. Again, the
‘‘Gap’’ column reflects the relative optimality gap between the
solution found and the best known lower bound for this instance.
This lower bound was obtained using the by applying the
) instance with b¼ 3:0, g¼ 0:25, d¼ 50:0.

) instance with b¼ 3:0, g¼ 0:25, d¼ 35:0.



Fig. 4. Algorithm performance for a (10,000,50) instance with b¼ 3:0, g¼ 0:25, d¼ 25:0.

Fig. 5. Algorithm performance for a (10,000,50) instance with b¼ 3:0, g¼ 0:10, d¼ 7:0.

Table 5
Results for instance (10,000, 50) with ta ¼ 0:05.

b g d NI Time BestSol Gap (%)

3.0 0.25 15.0 55 424 127.633 0.30

0.25 10.0 54 689 127.770 0.41

0.25 7.0 45 800 127.595 0.27

0.25 5.0 35 615 127.587 0.27

0.25 3.0 54 874 127.626 0.30

0.10 15.0 478 1697 127.929 0.54

0.10 10.0 154 812 127.698 0.35

0.10 7.0 100 545 127.626 0.30

0.10 5.0 61 694 127.532 0.22

0.10 3.0 75 2261 127.543 0.23
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algorithm to this instance with no reduction strategies into effect
(that is, b¼ 50:0, g¼ d¼ 0:0) and time limit of 22,000 CPU sec as
stopping criterion.

As can be seen, even in this more difficult case it was possible
to obtain feasible designs in very competitive times. The best
solution, with a relative optimality gap of 0.22%, was found under
the g¼ 10:0 and d¼ 5:0 settings showing the success of the
introduced strategies for speeding up convergence, and keeping
solution quality. Note that all designs obtained fall within 0.6% of
optimality.

Finally, Fig. 6 displays the graphical solution of a 5000-BU,
50-territory instance under tolerances of 0.05. This is a feasible
solution satisfying all of the planning constraints. The legend
besides the graph indicates the number of BUs contained in each
territory.
7. Conclusions

In this paper we have addressed a commercial territory design
problem motivated by a real-world application in the bottled
beverage distribution industry. Planning criteria includes territory
compactness, territory balancing with respect to three activity
measures, and territory connectivity. In addition, our model
incorporates new issues such as disjoint assignment requirements
and partial similarity with existing plan. We present a new MILP



Fig. 6. Visual results of an optimal territory design in Monterrey with 5000 BUs.
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model in literature that considers all these issues. A solution
framework based on a cut generation strategy within a branch-
and-bound algorithm for solving the allocation level for a fixed set
of territory centers is developed. This method is intended for
solving large-scale instances. The method is enhanced through
several algorithmic strategies that help reduce the size of the
problem and search space. One added value is a very effective tool
which can be relatively easily implemented with off-the-self
optimization modeling software such as X-PRESS, GAMS, AMPL.
The method and its algorithmic strategies were assessed on large-
scale real-world instances. Previous work on heuristics for some
related commercial territory design models had reported empiri-
cal evidence on instances of up to 2000 BUs in some simplified
models. We found the proposed method very successful on
handling instance of 5000- and 10,000-BUs, obtaining solutions
of very good quality with relative optimality gaps of less than
0.10% and 0.22% for the instances under tolerance levels for the
balancing constraints of 0.10 and 0.05, respectively.

There are naturally opportunities for future research. For
instance, in this work we focused on solving the allocation
problem; however, the results obtained in our research can be
used to extend this work to a location–allocation approach where
the centers are dynamically updated in an iterative way. This has
been done in other similar simpler models. Deriving models and
methods for problems with both territory design and routing
decisions simultaneously is another very challenging research
area. In fact, when one looks at the districting literature in
general, one can barely find a very few applications addressing
this issue. Finally, in this work we are assuming a deterministic
model; therefore the introduction of stochastic models to deal
with some parameters such as the product demand becomes a
natural extension worthwhile exploring.
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problema de definición de territorios de atención comercial. In: Arenas MG,
Herrera F, Lozano M, Merelo JJ, Romero G, Sánchez AM, editors. Proceedings
of the IV Spanish conference on metaheuristics, evolutionary and bioinspired
algorithms (MAEB). Granada, Spain; 2005. p. 609–617, [in Spanish].

[11] Salazar-Aguilar MA, Rı́os-Mercado RZ, González-Velarde JL. A bi-objective
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