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Abstract A bi-objective commercial territory design problem motivated by a real-
world application from the bottled beverage distribution industry is addressed. The
problem considers territory compactness and balancing with respect to number of
customers as optimization criteria. Previous work has focused on exact methods for
small- to medium-scale instances. In this work, a GRASP framework is proposed for
tackling considerably large instances. Within this framework two general schemes
are developed. For each of these schemes two strategies are studied: (i) keeping con-
nectivity as a hard constraint during construction and post-processing phases and,
(ii) ignoring connectivity during the construction phase and adding this as another
minimizing objective function during the post-processing phase. These strategies are
empirically evaluated and compared to NSGA-II, one of the most successful evolu-
tionary methods known in literature. Computational results show the superiority of
the proposed strategies. In addition, one of the proposed GRASP strategies is suc-
cessfully applied to a case study from industry.
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1 Introduction

The problem addressed in this paper arises from a beverage distribution firm in Mex-
ico. Single objective versions of the problem have been studied by Ríos-Mercado
and Fernández (2009), Segura-Ramiro et al. (2007), Caballero-Hernández et al.
(2007), and Salazar-Aguilar et al. (2011). The introduction of new bi-objective
models and an exact solution procedure was proposed recently (Salazar-Aguilar
et al. 2010). In general, commercial territory design belongs to the family of
districting problems that have a broad range of applications like political dis-
tricting (Bozkaya et al. 2003), school districting (Ferlang and Guénette 1990;
Caro et al. 2004), and sales and service territory design (Kalcsics et al. 2005;
Zoltners and Sinha 2005). In most of these applications a single objective prob-
lem is considered, however in the real world it is very common to pursue more
than one criterion. In fact, looking at the literature on territory design, a few works
address these problems as multiobjective problems (Tavares-Pereira et al. 2007;
Ricca and Simeone 2008; Salazar-Aguilar et al. 2010). Territory design (TD) is
very common in every enterprise dedicated to product sales and product distribution,
specifically when the firm needs to divide the market into smaller regions to delegate
responsibilities to facilitate the sales and distribution of goods. These decisions need
to be constantly evaluated due to the frequent market changes such as the introduction
of new products or changes in the workload, which are factors that affect the territory
design. Additionally, the multiple planning requirements that the firm wants to satisfy
and the large amount of customers that need to be grouped makes this difficult task
even more critical. An efficient tool with capacity to provide good solutions to large
problems is needed. Salazar-Aguilar et al. (2010) propose an exact solution proce-
dure for the problem addressed in this work. In this procedure city blocks are used
as basic units (BUs). They report efficient solutions for instances with up to 150 BUs
and 6 territories. In the real world, it is very common to deal with instances of 500 to
2000 BUs. This fact motivates the efficient design and implementation of metaheuris-
tic approaches for generating good solutions is short computing time. Therefore, in
this work we propose some strategies based on a GRASP metaheuristic (BGRASP
and TGRASP) aiming at finding a good approximation of the Pareto frontier. Each
of these strategies consists of two main phases: construction and post-processing.
In the construction phase a simultaneous territory creation is carried out and in the
post-processing phase the neighborhood is explored in a similar way to that of the
MOAMP procedure applied by Molina et al. (2007).

To the best of our knowledge no GRASP procedures have been implemented for
solving multiobjective applications of the territory design problem, and moreover, no
other metaheuristic technique for this particular commercial territory design problem
has been developed for tackling large instances of the problem. However, GRASP
procedures have been developed for other multiobjective combinatorial problems
(Reynolds and de la Iglesia 2009; Higgins et al. 2008; Vianna and Arroyo 2004;
Lourenço et al. 2001; Davoudpour and Ashraf 2009).

In our work, the effectiveness of GRASP as a multiobjective approach was ana-
lyzed over a set of instances based on real-world cases. The results reveal that our
GRASP strategies outperform one of the best multiobjective evolutionary methods
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(NSGA-II). In addition, BGRASP has better performance than TGRASP. The paper
is organized as follows. In Sect. 2 the problem is described and a bi-objective op-
timization model is presented. In Sect. 3 the proposed solution strategies are fully
detailed. Computational results, comparisons among different approaches, and a case
study are discussed in Sect. 4. Finally we wrap up with the conclusions in Sect. 5.

2 Multiobjective commercial territory design

2.1 Problem description

In particular, the problem consists of finding a partition of the entire set of city blocks
or basic units (BUs) into a fixed number (p) of territories, considering several plan-
ning territory requirements such as compactness, balance, and connectivity. Com-
pactness means customers within a territory should be relatively close to each other.
Balance implies territories must have similar size with respect to two attributes (num-
ber of customers and sales volume). Connectivity means BUs in the same territory
can reach each other without leaving the territory. In addition, exclusive assignment
from BUs to territories is required. The problem is modeled by an undirected graph
G = (V ,E), where V is the set of nodes (BUs) and E is the set of edges represent-
ing adjacency between blocks. That is, a block or BU j is associated with a node,
and an edge connecting nodes i and j exists if blocks i and j are adjacent. For each
node j ∈ V there are some associated parameters such as geographical coordinates
(cx, cy), and two measurable attributes (number of customers and sales volume). The
number of territories is given by parameter p. The company wants balanced territo-
ries with respect to each of the attribute measures. Let us define the size of territory
Vk with respect to attribute a as: w(a)(Vk) = ∑

i∈Vk
(w

(a)
i ), where a ∈ {1,2} and w

(a)
i

is the value associated to attribute a in node i ∈ V . Another characteristic is that all of
the BUs assigned to each territory are connected by a path contained entirely within
the territory. In addition, the BUs in each territory must be relatively close to each
other (compactness). One way to achieve this requirement is to minimize a disper-
sion measure. We use a dispersion measure based on the objective of the p-median
problem (p-MP). All parameters are assumed to be known with certainty. We used a
bi-objective optimization model introduced by Salazar-Aguilar et al. (2010). In this
model the compactness and the maximum deviation with respect to the number of
customers are considered as objectives and the remaining requirements are treated as
constraints. Let Ni = {j ∈ V : (i, j) ∈ E ∨ (j, i) ∈ E} be the set of adjacent nodes to
node i; i ∈ V . The Euclidean distance between i and j is denoted by dij , i, j ∈ V .

Due to the discrete structure of the problem and to the exclusive assignment con-
straint, it is practically impossible to have perfectly balanced territories with respect
to each attribute. Let τ (2) be the specific tolerance allowed by the company to measure
the relative deviation from average territory size with respect to sales volume. The av-
erage (target) value of attribute a can be computed as μ(a) = w(a)(V )/p, a ∈ A.
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182 M.A. Salazar-Aguilar et al.

2.2 Bi-objective optimization model

Decision variables

xij =
{

1 if basic unit j is assigned to territory with center in i; i, j ∈ V ,

0 otherwise.

In that sense xii = 1 implies i is a territory center.

Min f1 =
∑

j∈V

∑

i∈V

dij xij , (1)

Min f2 = max
i∈V

{
1

μ(1)

∣
∣
∣
∣

∑

j∈V

(w
(1)
j xij ) − μ(1)xii

∣
∣
∣
∣

}

. (2)

Subject to:
∑

i∈V

xii = p, (3)

∑

i∈V

xij = 1 ∀j ∈ V, (4)

∑

j∈V

w
(2)
j xij ≥ (1 − τ (2))μ(2)xii i ∈ V, (5)

∑

j∈V

w
(2)
j xij ≤ (1 + τ (2))μ(2)xii i ∈ V, (6)

∑

j∈∪v∈S(Ni\S)

xij −
∑

j∈S

xij ≥ 1− | S | i ∈ V ; S ⊂ [V \ (Ni ∪ {i})], (7)

xij ∈ {0,1} i, j ∈ V. (8)

Objective (Eq. 1) represents a dispersion measure based on a p-MP objective. In
this sense, minimizing dispersion is equivalent to maximizing compactness. The sec-
ond objective (Eq. 2) represents the maximum deviation with respect to the target size
related to the number of customers. Thus, balanced territories should have small devi-
ation with respect to the average number of customers. Constraint (Eq. 3) guarantees
the creation of exactly p territories. Constraints (Eq. 4) guarantee that each node j is
assigned to only one territory. Constraints (Eqs. 5–6) represent the territory balance
with respect to the sales volume as it establishes that the size of each territory must
lie within a range (measured by tolerance parameter τ (2)) around its average size.
Constraints (Eq. 7) guarantee the connectivity of the territories. Note that, as usual,
there is an exponential number of such constraints.

Single objective versions of this problem have been studied before. Ríos-Mercado
and Fernández (2009) consider a version of the problem where the dispersion, mod-
eled by a measure based on the p-center problem objective, is to be minimized. Their
model considered as constraints three balancing requirements: balancing with re-
spect number of customers, product demand, and workload. They develop a reactive
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GRASP consisting of three phases: (i) A construction phase that builds q territories
by using a greedy function that considers dispersion and violation with respect to
the balancing constraints; (ii) an adjustment phase that converts the q-partition into a
p-partition; and a local search phase that attempts to improve both infeasibility and
the dispersion objective. Their empirical work shows very good results on instances
of up to 500 and 1000 BUs. Caballero-Hernández et al. (2007) extend that model
to account for joint assignment constraints, that is, requirements that a given set of
pairs of BUs must belong to the same territory. They also proposed a GRASP for this
problem with a preprocessing step that first satisfies the joint assignment constraints
by solving an associated k-shortest path problem starting with n territories (one for
each BUs). The construction phase of GRASP merges territories one by one until p

territories are formed. The method is successfully applied to instances of 500 and
1000 nodes. In Segura-Ramiro et al. (2007), the authors consider a commercial TDP
where the dispersion is now measured by a p-median problem type of function. This
of course yields a model with different properties. The authors develop a location-
allocation heuristic with relative good results. Salazar-Aguilar et al. (2011) address
the single-objective problem from an exact optimization perspective. They present
new integer quadratic programming models, and an exact optimization framework
based on branch and bound and cut generation. They were able to solve instances of
up to 200 BUs and 11 territories.

The bi-objective model was introduced by Salazar-Aguilar et al. (2010), where
an ε-constraint method is developed for tackling small- to medium- scale instances
from an exact optimization perspective. In that work, two different measures of dis-
persion are studied, the one based on the p-center problem objective and the one
based on the p-median objective model. It is shown how the latter has a tighter LP
relaxation that allows to solve larger instances. The proposed method is shown to be
successful for finding optimal Pareto frontiers on 60 to 150 node instances. It was
also clear that larger instances were indeed intractable, making therefore the case for
a heuristic approach. To the best of our knowledge this is the only multiobjective
model for this particular application. In fact, most of the work on territory design
and districting in general considers single-objective models. Among those few tak-
ing a multiobjective approach in territory design we can find the work of Guo et al.
(2000) where a multiobjective zoning and aggregation tool (MOZART) is proposed.
MOZART is an integration of a graph partitioning engine with a Geographic Infor-
mation System (GIS) through a graphical user interface. They report a case with 577
census collection districts and 20 zones. Wei and Chai (2004) present a multiobjective
hybrid metaheuristic approach for a GIS-based spatial zoning model. Their heuristic
procedure is a combination of tabu search and scatter search. They show the proce-
dure performance by solving a political districting problem with 55 basic units and 3
districts. Tavares-Pereira et al. (2007) study a multiobjective public service district-
ing problem. They propose an evolutionary algorithm with local search and apply it
to a real-world case of the Paris region public transportation. They discuss results
for bi-objective cases considering different criteria combinations. Ricca and Simeone
(2008) address a multiple criteria political districting problem. They transform the
multiobjective model into a single-objective model using a convex combination and
compare the behavior of four local search metaheuristics: descent, tabu search, sim-
ulated annealing, and old bachelor acceptance. The application is performed over a
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sample of five Italian regions where old bachelor acceptance produces the best results
in most of the cases.

3 Proposed GRASP strategies

In general, GRASP is a metaheuristic that contains good features of both pure greedy
algorithms and random construction procedures. It has been widely used for suc-
cessfully solving many combinatorial optimization problems. GRASP is an iterative
process in which each major iteration consists typically of two phases: construction
and post-processing. The construction phase attempts to build a feasible solution and
the post-processing phase attempts to improve it. The main motivation for GRASP
stems from the fact that some of the good ideas developed for the single-objective
versions of the problem can be exploited for this particular application, particularly
in the construction and local search, where one can easily keep the connectivity con-
straints. As far as we are concerned no GRASP methods have been developed for
this or similar multiobjective territory design problems. However, GRASP has been
successfully applied to other multiobjective combinatorial optimization problems.

Lourenço et al. (2001) propose a GRASP for a bus-driver scheduling problem.
However, GRASP is used as a single-objective optimizer, as a component of a mul-
tiobjective tabu search or genetic algorithm. Vianna and Arroyo (2004) present a
simple GRASP for the multiobjective Knapsack problem. In each iteration of the
GRASP, a linear combination of the objectives, referred to as a weighted linear util-
ity function, is chosen. Then both the greedy randomized construction phase and the
local search phase aim to maximize this weighted sum. Results presented suggest
that the algorithm is competitive when compared with a number of multiobjective
genetic algorithms. Higgins et al. (2008) present the problem of investing in land-
scapes to achieve outcomes that have multiple environmental benefits, formulating it
as a multiobjective integer programming model, with objective functions represent-
ing biodiversity, water run-off and carbon sequestration. To find non-dominated so-
lutions the authors develop a multiobjective GRASP embedded into an evolutionary
method. Reynolds and de la Iglesia (2009) introduce a new multiobjective algorithm
for the production and selection of classification rules for a particular class of a data-
base (which is often referred to as partial classification), this algorithm is based on
GRASP. The approach presented takes advantage of some specific characteristics of
the data mining problem being solved, allowing for the very effective construction
of a set of solutions that form the starting point for the local search phase of the
GRASP. Davoudpour and Ashraf (2009) present a GRASP for a multiobjective flow
shop scheduling problem with sequence-dependent setup times. The authors reduce
the model to a single-objective model that adds the four criteria being considered,
and address the problem basically as a single-objective model.

In this paper, we are introducing different GRASP schemes called BGRASP and
TGRASP, each having two variants. For instance, BGRASP-I is a GRASP strategy
that uses a merit function based on two components: dispersion and maximum devi-
ation with respect to the target value in the number of customers. This method main-
tains connectivity as a hard constraint during the construction and post-processing
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phases. The BGRASP-I post-processing phase consists of optimizing three objective
functions: dispersion, maximum deviation with respect to the number of customers,
and total infeasibility in constraints (Eqs. 5 and 6). In contrast, BGRASP-II does not
consider connectivity during the construction phase, its merit function is the same as
used in BGRASP-I, but during post-processing phase, BGRASP-II adds connectivity
as an objective function. Therefore, the goal in this post-processing phase is to mini-
mize four objective functions: dispersion, maximum deviation, total infeasibility, and
total number of unconnected BUs. TGRASP-I and TGRASP-II are described in a
very similar way to BGRASP-I and BGRASP-II, respectively. The only difference
is that the merit function in TGRASP-I and TGRASP-II has three components: dis-
persion, maximum deviation with respect to the number of customers, and maximum
infeasibility with respect to constraints (Eq. 6). We described the GRASP strategies
in a single scheme, see Procedure 1.

Procedure 1 shows the general scheme for the proposed GRASP strategies. An
instance of the commercial territory design problem, the maximum number of iter-
ations (itermax), the quality parameter (α), the minimum node degree (f ) so that a
node i ∈ V can be selected as initial seed, the maximum number of allowed move-
ments (maxmoves) and the GRASP strategy (BGRASP-I, BGRASP-II, TGRASP-I or
TGRASP-II) constitute the input. In order to explore the objective space in a bet-
ter way, for each GRASP iteration a set of weights � is selected in such a way that
λ ∈ � : λ ∈ [0,1]. The two phases are applied for each λ ∈ �. Thus, for each iteration
and each weight λ ∈ � a construction phase and a local search phase is applied. The
construction and the local search applied depends on the strategy chosen. Observe
that, the merit function in BGRASP-I and BGRASP-II uses a weighted combination
of the two original objectives. In contrast, in TGRASP-I and TGRASP-II the balanc-
ing constraints (Eqs. 5–6) are relaxed and added to the merit function.

Under strategies BGRASP-I and TGRASP-I, after the construction phase stops,
the obtained solution may be infeasible with respect to the sales volume. Then, in
order to obtain feasible solutions, during the post-processing phase infeasibility is
treated as the objective to be minimized. In these strategies, this phase consists of
systematically applying the local search sequentially to each of the three objectives
individually. That is, first local search is applied using z1 as the merit function in a
single objective manner. After a local optimum is found, the local search is continued
with z2 as merit function, and then z3. Finally, the initial objective z1 is used after
the local optimum is obtained for the last objective. During the search, the set of
non-dominated solutions is updated at every solution. It is also clear that the order of
this single objective local search strategy implies different search trajectories, that is,
optimizing in the order (z1, z2, z3) generates a trajectory different from (z2, z3, z1),
for instance. In BGRASP-II and TGRASP-II strategies, after the construction phase
stops, the obtained solution may be infeasible not only with respect to sales volume
balance, but with respect to the connectivity constraints as well. At the end of our
GRASP strategies, an approximation of the Pareto front is reported.

3.1 BGRASP description

This strategy follows the generic scheme of GRASP. A greedy function (Eq. 9) during
construction phase is a convex combination of two components weighted by λ which
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Procedure 1 General framework for BGRASP and TGRASP strategies
Input:

α := GRASP RCL quality parameter
itermax := GRASP iterations limit
f := Minimum node degree in the initial seeds
maxmoves := Maximum number of movements in the post-processing phase
Obj := Number of objectives to be optimized during the post-processing phase
strategy := BGRASP-I, BGRASP-II, TGRASP-I or TGRASP-II

Output: Deff: set of efficient solutions
Deff ← ∅
Dpot(S) ← ∅: set of potential efficients solutions
if (strategy ∈ {BGRASP-I,BGRASP-II}) then

for (λ1, λ2, . . . , λr ) do
for (l = 1,2, . . . , itermax) do

S ← ConstructSolutionBGRASP(α,f,λ, strategy)
end for

end for
else

for (λ1, λ2, . . . , λr ) do
for (l = 1,2, . . . , itermax) do

S ← ConstructSolutionTGRASP(α,f,λ, strategy)
end for

end for
end if
for (g = 1, . . . ,Obj) do

Dpot(S) ←PostProcessing(S, maxmoves, strategy, g, Obj)
UpdateEfficientSolutions(Deff, Dpot(S))

end for
return Deff

are related to the original objectives: dispersion measure (Eq. 1) and maximum de-
viation with respect to the target number of customers (Eq. 2). The post-processing
phase consists of the successive application of single-objective local search proce-
dures (taking one objective at a time). These main BGRASP components are detailed
as next.

3.1.1 BGRASP construction phase

In general, the construction phase consists of the assignment of BUs to territories
keeping balanced territories with respect to the product demand while seeking good
objective function values. Before the assignment process takes place p initial points
are selected to open p territories. These points are the basis for the assignment
process. Previous work showed that this method is very sensitive to the initial seed
selection. For instance, when some seeds are relatively close to each other the growth
of some territories stops way before reaching balancing. This implies some territories
end up being relatively small. Hence, a better spread of the seeds is needed. In order to
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obtain better initial seeds, p disperse initial points with high connectivity degree are
selected. Then, the construction phase starts by creating a subgraph G′ = (V ′,E(V ′))
where i ∈ V ′ if and only if the degree of i, d(i) ≥ f , where f is a user-given para-
meter. The seed selection is made by solving a p-dispersion problem (Erkut 1990)
on G′. The p nodes are used as seeds for opening p territories. Let {i1, i2, . . . , ip} be
this set of disperse nodes. Then from this set, a partial solution S = (V1,V2, . . . , Vp)

is starting by setting Vt = {it }, t ∈ {1,2, . . . , p}.
Then, at a given BGRASP construction iteration p partial territories are considered

and the process attempts to allocate an unassigned node keeping balanced territories
with respect to the demand. To do that, this method attempts to make assignments to
the smallest territory (considering the demand). If BGRASP-I is the strategy selected
by the user, the set of possible assignments is given only for those nodes that allow
to preserve the connectivity. On the other hand, if the user selected BGRASP-II,
the possible assignments are all those nodes that have not been assigned yet. Let
Vt∗ be the territory with smallest demand, c(t∗) the center of Vt∗ and N(Vt∗) the
set of currently unassigned nodes that can be assigned to Vt∗ . If N(Vt∗) is empty
the procedure takes the next smallest territory and proceeds iteratively. The cost of
assigning a node j to territory Vt∗ is given by

φ(j, t∗) = λfdisp(j, t
∗) + (1 − λ)fdev(j, t

∗), (9)

where

fdisp(j, t
∗) = 1

dmax

( ∑

i∈Vt∗∪{j}
dic(t∗)

)

, (10)

fdev(j, t
∗) = 1

μ(1)
max

{
w(1) (Vt∗ ∪ {j}) − μ(1),μ(1) − w(1) (Vt∗ ∪ {j})}, (11)

and the normalization parameter is

dmax = (|V | − p)

p
max
i,j∈V

{
dij

}
. (12)

Observe that this greedy function is a weighted sum of the changes produced in the
objective values.

Following the GRASP mechanism, a Restricted Candidate List (RCL) is built with
the most attractive assignments which are determined by a quality parameter α ∈
[0,1] (specified by the user). The RCL is computed as follows:

φmin = min
j∈N(t∗)

φ(j, t∗), (13)

φmax = max
j∈N(t∗)

φ(j, t∗), (14)

RCL = {j ∈ N(t∗) : φ(j, t∗) ∈ [φmin, φmin + α(φmax − φmin)]}. (15)

Then, a node i is randomly chosen from the RCL. The territory Vt∗ is updated,
Vt∗ = Vt∗ ∪{i} and the center c(t∗) is recomputed. This is the adaptive part of GRASP.
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This proceeds iteratively until all nodes are assigned. At the end of the process a
p-partition S = (V1,V2, . . . , Vp) is obtained. This partition may be infeasible with
respect to the balance of sales volume. In a few words, the proposed construction
procedure tries to build territories similar in size with respect to the demand attribute.
The next component of BGRASP is the post-processing or improvement phase.

3.1.2 BGRASP post-processing phase

The main idea of this local search is to successively apply a single-objective local
search scheme (one objective function at a time) to avoid the cycling behavior ob-
served in multiobjective search. This idea is motivated by its successful application in
other MOCO methods (Molina et al. 2007). This process starts with the final solution
obtained in the construction phase S = {V1, . . . , Vp}. Additionally, for each Vt ∈ S

a center c(t) ∈ Vt is associated and a territory index q(i) = t is known for i ∈ Vt .
S may be infeasible with respect to the balancing constraints (Eqs. 5–6), thus in this
phase BGRASP attempts to obtain feasible solutions by simultaneously searching for
solutions that represent the best compromise between the objective functions. In or-
der to obtain feasible solutions during this phase, balancing constraints (Eqs. 5–6) are
dropped and are considered as an additional objective function instead. In the case of
BGRASP-I, there are three objectives that are minimized:

(i) dispersion measure

z1(S) =
∑

j∈Vt ,t∈T

djc(t), (16)

(ii) maximum deviation with respect to the number of customers

z2(S) = 1

μ(1)
max
t∈T

{
max{w(1)(Vt ) − μ(1),μ(1) − w(1)(Vt )}

}
, (17)

(iii) total infeasibility

z3(S) = 1

μ(2)

∑

t∈T

max
{
w(2)(Vt ) − (1 + τ (2))μ(2),

(1 − τ (2))μ(2) − w(2)(Vt ),0
}

(18)

related to the balancing of sales volume (constraints (Eqs. 5 and 6)).
In contrast, the post-processing phase in BGRASP-II adds another minimizing

objective to those three objectives used in BGRASP-I. It is given by

z4(S) =
∑

t∈T

|η(Vt )|, (19)

where

η(Vt ) =
⋃

r∈{1,...,q−1}
Bt

r .
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The function z4 computes the total number of unconnected nodes. For territory
Bt = (Vt ,E(Vt )) let Bt

r = (Xr,E(Xr)) be the r-th connected component of Bt , for
r = 1, . . . , q . For simplicity, let c(t) ∈ Xq . Evidently, if q = 1 then Bt is connected.
Otherwise there are q − 1 sets of nodes that do not connect with the center c(t) of
territory Vt .

The post-processing phase attempts to find potential efficient solutions in the
neighborhood of S. For doing that, a neighborhood N(S) is defined. This neigh-
borhood is formed by the solution set obtained by all possible moves such that a
basic unit i ∈ Vq(i) is reassigned to any adjacent territory Vq(j), q(j) 
= q(i), into the
p-partition defined by S. When the current solution is connected, a move is allowed
only if the resulting solution keeps the connectivity requirement. This means that,
when BGRASP-I is used, only connected moves are allowed and when BGRASP-II
is used, this condition is activated once a connected solution has been found. Each
possible move move(i, j ) deletes i from territory q(i) and inserts it into territory q(j),
(i, j) ∈ E,q(i) 
= q(j). For example, suppose there is a partition S with the structure
S = (. . . , Vq(i), . . . , Vq(j), . . .), if move(i, j ) is selected, the neighbor solution S̄ is
given by S̄ = (. . . , Vq(i) \ {i}, . . . , Vq(j) ∪ {i}, . . .). The move(i, j ) is accepted only
if this improves the value of the objective function that is being optimized in that
moment.

The neighborhood exploration consists of a relinked local search strategy. This is
very similar to the local search proposed in MOAMP by Caballero et al. (2004) and
used by Molina et al. (2007). The linking of single-objective local search schemes is
made by considering different ordering of the objective functions being pursued. Sup-
pose we select the optimization order as (z1(S), z2(S), z3(S)), then the local search
path is as follows: The first local search starts with any given solution S, typically
obtained at the end of the construction phase, and attempts to find a better solution
to the problem with respect to the single objective z1(S) (Eq. 16). Let S1 be the best
point visited at the end of this search. Then a local search is applied again to find
the best solution to the problem with the single objective z2(S) (Eq. 17) using S1 as
initial solution. After that, a local search is applied to find the best solution to the
problem considering the single objective z3(S) (Eq. 18) and the initial solution S2

obtained in the previous optimization. At this point, we solve again the problem with
the first objective z1(S) starting from S3. This phase yields at least 3 points that ap-
proximate the best solutions to the single objective problems that result from ignoring
all but one objective function. During this phase only feasible solutions are kept and
a potential set of nondominated solutions is kept too. Additionally, efficient solutions
may be found because all potential nondominated solutions are checked for inclusion
in the efficient set E. This efficient set E is updated according to Pareto efficiency.
This check is made over the original objectives: dispersion (Eq. 16) and maximum
deviation with respect to the number of customers (Eq. 2).

Definition 1 Pareto efficiency. A solution x∗ ∈ X is efficient if there is no other
solution x ∈ X such that f (x) is preferred to f (x∗) according to Pareto order. That is,
x∗ ∈ X is efficient if there is no solution x ∈ X such that fi(x) ≤ fi(x

∗) ∀i = 1, . . . , g

and at least one j ∈ {1, . . . , g} such that fj (x) < fj (x
∗).
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Procedure 2 PostProcessing(S0, g,Obj )
Input:

S = S0 := Initial solution
h = g := objective index for starting the linked local search, g ∈ {1,2, . . . ,Obj}
Obj := Number of objective functions to be optimized

Output: D: Nondominated solutions set
Do
D ← ∅, count ← 0
N(S): {Set of neighbors. In this case set of possible moves}
A move (i, j) is represented by an arc (i, j) ∈ E such that t (i) 
= t (j) i.e.,
N(S) = {(i, j) ∈ E such that t (i) 
= t (j) under the partition S}
while (N(S) 
= ∅) and (count < itermax) do

(i, j) ← select_move(N(S))
N(S) ← N(S) \ {(i, j)}
acceptable ← EvaluateMove(S, (i, j), h)
if (acceptable) then

St(i) ← St(i) \ {i}
St(j) ← St(j) ∪ {i}
count← count+1
Update(N(S))
if (IsFeasible(S) = YES) then

UpdateNDS(D,S)
end if

end if
end while
if (h < Obj) then

h = h + 1
else

h = h − 1
end if
While (h 
= g)
return D

The relinked local search process can be repeated by using a different ordering of
the objectives. In this work, different trajectories depending on the number of objec-
tives to be optimized are explored. For instance, in BGRASP the following trajecto-
ries, starting from the same initial solution, were used: (z1, z2, z3, z1), (z2, z3, z1, z2)
and (z3, z1, z2, z3). Each local search stops when the limit of iterations is reached or
when the set of possible moves is empty. At the end the output is an approximate
Pareto front.

3.2 TGRASP description

TGRASP-I and TGRASP-II are very similar to the BGRASP-I and BGRASP-
II, respectively. The main difference is in the construction phase (see Procedure 3).
During this phase the greedy function (Eq. 20) is a convex combination (Eq. 22) of
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Procedure 3 ConstructSolutionTGRASP(α, f , λ, strategy)
Input:

α := GRASP RCL quality parameter
f := Minimum node degree which is required to consider a node as an initial seed
to open a new territory
λ := weight used in the greedy function
strategy := TGRASP-I or TGRASP-II

Output: S = (V1, . . . , Vp): Solution, p-partition of V

T = {1, . . . , p}, t ∈ T := Territory index
c(t) := Center of Vt

Flag(t) := 1 if a territory t is open, 0 otherwise
B ← V ; Vt ← ∅
H ← {i ∈ V : |Ni | ≥ f {Subgraph of G used to select the initial seeds}
Compute p disperse points {i1, . . . , ip}, it ∈ H

for all t ∈ T do c(t) ← it ; Vt ← Vt ∪ {it }; B ← B \ {it }
while (B 
= ∅) do

l ← arg min
t∈T

w(2)(Vt )

μ(2)

if (strategy = TGRASP-I) then
N(l) ←

⋃

i∈Vl

{j ∈ Ni and j ∈ B} {only connected nodes}

else
N(l) ←

⋃
{j ∈ B}

end if
if (N(l) 
= ∅) then

ComputeGreedyFunction γ (j, c(l)) for all j ∈ N(l)

γmin ← min
j∈N(l)

γ (j, l)

γmax ← max
j∈N(l)

γ (j, l)

RCL ← {j ∈ N(l) : γ (j, l) ∈ [γmin, α(γmax − γmin)]}
Random selection of k ∈ RCL
Vl ← Vl ∪ {k}
B ← B \ {k}
c(l) ← arg min

j∈Vl

∑

i∈Vl

dij {Update center}

else
flag(t)← 0{Close territory}

end if
end while
return S = (V1, . . . , Vp)

three components: dispersion measure (Eq. 10), maximum deviation with respect to
the target number of customers (Eq. 11), and maximum infeasibility with respect
to the upper bound of product demand balancing (Eq. 18). The strategy starts with p

disperse points (obtained as in BGRASP construction phase) and the cost of assigning
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a node i to territory t with center c(t) is measured by the greedy function

γ (j, t) = λ1fdisp(j, t) + λ2fdev(j, t) + λ3finfeas(j, t), (20)

where

finfeas(j, t) = 1

μ(2)
max

{
w(2) (Vt ∪ {j}) − (1 + τ (2))μ(2),0

}
, (21)

λ1 + λ2 + λ3 = 1. (22)

Note that (Eq. 21) penalizes for violations of the balancing constraint (Eq. 6) only.
The post-processing phase is depicted in Procedure 2. Note that, in TGRASP-I and
TGRASP-II, four objectives are minimized in the local search: (i) dispersion measure
(Eq. 16), (ii) maximum deviation with respect to the number of customers (Eq. 17),
(iii) infeasibility related to the balancing of product demand (Eq. 18), and (iv) total
number of unconnected nodes (Eq. 19). The updating of efficient solutions is made
by considering feasible solutions only.

4 Experimental results

4.1 Assessing the performance of the GRASP strategies

The proposed procedures were coded in C++, and compiled with the Sun C++
compiler workshop 8.0 under the Solaris 9 operating system and run on a SunFire
V440. The test instances were taken from the library developed by Ríos-Mercado
and Fernández (2009). These are based on real-world data provided by the indus-
trial partner for each set. We test 20 large instances for each set with (n,p) ∈
{(1000,50), (500,20)}. Tolerance parameter was τ (2) = 0.05 and the input parame-
ters for the GRASP strategies were f = 2, α = 0.04,� = {0,0.01,0.02, . . . ,1.0}, the
total number of GRASP iterations was 2020 and 2000 was the maximum number of
movements during the post-processing phase. These input parameters were set taking
into account previous empirical work.

During our experimental work, we observed that the largest computational effort
is during the post-processing phase. The multiple trajectories and the relinked local
search on each trajectory increase the computational time dramatically. In order to
find a good balance between construction and post-processing time, we made a filter-
ing of solutions in order to apply the post-processing phase only over a set of the best
solutions which were evaluated according to the merit function given by (Eq. 23).
We tested other merit functions that empirically showed poor behavior. That moti-
vated the use of this function for filtering solutions. Note that, each component is
normalized.

ρ(S) = 2fdisp(S)

(|V | − p)dMax
+ f

(1)
Tdev

p
, (23)

where

fdisp(S) =
∑

t∈T

∑

j∈Vt

djc(t), (24)
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f
(1)
Tdev =

∑

t∈T

{
1

μ(1)
max

{
w(1) (Vt ) − μ(1),μ(1) − w(1) (Vt )

}
}

, (25)

and

dMax = max
i,j∈V

dij . (26)

We selected 100 (out of 2020) solutions in such a way that these solutions have
the smallest values in the merit function given by (Eq. 23). The post-processing phase
(described in Procedure 2) was applied over the set of these filtered solutions.

This part of our experimental work was carried out to analyze the behavior of
each proposed strategy. Figures 1 and 2 show examples of efficient frontiers ob-
tained by all GRASP strategies. These results correspond to one instance on each
size tested ((500,20) and (1000,50), respectively. In multiobjective optimization the
performance comparison among different procedures is not an easy task. Observe for
instance that TGRASP-II gives the best and the worst frontier in Fig. 1 and Fig. 2,
respectively. Typically, the performance evaluation on multiobjective optimization is
carried out using different metrics like the following:

1. Number of points: It is an important measure because efficient frontiers that pro-
vide more alternatives to the decision maker are preferred than those frontiers with
few efficient points.

2. k-distance: This density-estimation technique used by Ziztler et al. (2001) in con-
nection with the computational testing of SPEA2 is based on the k-th nearest
neighbor method of Silverman (1986). This metric is simply the distance to the
k-th nearest efficient point. We use k = 4 and calculate both the mean and the max
of k-th nearest distance values. Thus, the smaller the k-distance the better in terms
of the frontier density.

3. Size of space covered (SSC): Suggested by Ziztler and Thiele (1999), this measure
computes the volume of the dominated points. Hence, larger values of SSC are
preferred.

4. C(A,B): It is known as the coverage of two sets measure (Ziztler and Thiele 1999).
This measure represents the proportion of points in the estimated efficient B that
are dominated by the efficient points in the estimated frontier A.

We computed the average metric values over the tested instance sets. Tables 1 and
2 contain a summary of these results. It is important to comment that some strategies
reported 4 or less efficient points for some (no more than 3) of the instances tested.
These strategies are marked with (*). We do not considered these cases for computing
the k-distance metrics.

Table 1 shows that TGRASP-II is an attractive strategy given that it reported the
minimum values of the k-distance (mean and max) measure. That means the fronts
reported by TGRASP-II are denser than those reported by the other strategies, in the
set of instances (500,20). Observe that the size of space covered (SSC) of TGRASP-
II is very similar to the best value of this metric which was reported by BGRASP-II.
In addition, the number of efficient points reported by TGRASP-II is very close to
the best values of this metric (reported by TGRASP-I).

Table 2 shows that TGRASP-II reached the best k-distance values as in the previ-
ous set of (500,20). However, the SSC values reported by TGRASP-II are the worst
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Fig. 1 Efficient frontiers for
instance ds_500_20-03

Fig. 2 Efficient frontiers for
instance ds_1000_50-08

Table 1 Summary of metrics for instance set (500,20)

GRASP k-distance (mean) k-distance (max) SSC N. of points

strategy Min Ave Max Min Ave Max Min Ave Max Min Ave Max

BGRASP-I 0.169 0.367 0.729 0.401 0.661 0.995 0.528 0.726 0.883 5.000 9.700 17.000

TGRASP-I 0.142 0.317 0.764 0.301 0.638 1.038 0.542 0.712 0.853 6.000 11.600 19.000

*BGRASP-II 0.145 0.339 0.851 0.203 0.618 0.996 0.682 0.851 0.993 4.000 8.950 16.000

TGRASP-II 0.117 0.294 0.570 0.156 0.569 0.900 0.638 0.867 0.971 5.000 9.250 16.000

for instances of (1000,50) while BGRASP-II reported the best values of this met-
ric. Regarding the number of efficient points both BGRASP-I and BGRASP-II had
similar behavior.

A summary for the coverage of two sets measure is shown in Tables 3 and 4. Each
column on these tables contains the mean proportion of points that are dominated
by the strategy indicated by the row label. In Table 3, for instance, the values of
the third row mean that the non-dominated points generated by BGRASP-II domi-
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Table 2 Summary of metrics for instance set (1000,50)

GRASP k-distance (mean) k-distance (max) SSC N. of points

strategy Min Ave Max Min Ave Max Min Ave Max Min Ave Max

BGRASP-I 0.173 0.326 0.926 0.372 0.659 1.093 0.542 0.786 0.905 5.000 11.850 18.000

*TGRASP-I 0.156 0.290 0.415 0.376 0.628 0.873 0.608 0.740 0.867 4.000 10.550 17.000

BGRASP-II 0.172 0.301 0.480 0.284 0.601 0.984 0.622 0.806 0.954 5.000 10.850 18.000

*TGRASP-II 0.086 0.291 0.494 0.398 0.547 0.809 0.100 0.306 0.550 3.000 9.300 25.000

Table 3 Mean value of
coverage of two sets measure for
instances from (500,20)

Dominance BGRASP-I TGRASP-I BGRASP-II TGRASP-II

BGRASP-I 0.000 0.544 0.143 0.240

TGRASP-I 0.344 0.000 0.107 0.166

BGRASP-II 0.770 0.833 0.000 0.442

TGRASP-II 0.728 0.815 0.477 0.000

Table 4 Mean value of
coverage of two sets measure for
instances from (1000,50)

Dominance BGRASP-I TGRASP-I BGRASP-II TGRASP-II

BGRASP-I 0.000 0.646 0.333 0.995

TGRASP-I 0.300 0.000 0.264 0.995

BGRASP-II 0.541 0.591 0.000 0.995

TGRASP-II 0.000 0.000 0.000 0.000

nate 77% of those non-dominated points obtained by BGRASP-I and 83.3% of those
non-dominated points generated by TGRASP-I. In addition, Table 4 shows that for
instances from (1000,50) the non-dominated solutions obtained by BGRASP-II tend
to dominate 99.5% of those non-dominated points generated by TGRASP-II. In all
instances tested, BGRASP-II strategy presents the best compromise for this perfor-
mance measure.

Taking into account the behavior of the proposed solution strategies, we conclude
that BGRASP-II is the most robust strategy given that overall instances tested it re-
ported the best mean values of the space size covered (SSC) and the coverage of two
sets measures. Moreover, this procedure reported average values (close to the best
values) for the number of points and k-distance metrics.

4.2 Comparison of GRASP strategies and NSGA-II

To asses the quality of our proposed GRASP strategies. We implemented one of
the most successful multiobjective technique called NSGA-II (see Deb et al. 2002
for a detailed description). Four objective functions are minimized: (i) dispersion
(Eq. 16), (ii) maximum deviation with respect to the average number of customers
(Eq. 17), (iii) total infeasibility with respect to the balancing constraints of sales vol-
ume (Eq. 18), and iv) total number of unconnected nodes (Eq. 19). When the con-
vergence criterion is reached, the best nondominated solutions are filtered to obtain
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Table 5 Summary of mean
metrics for two instances from
set (500,20)

Procedure N. of points k-distance k-distance SSC

(mean) (max)

BGRASP-I 6.000 0.368 0.636 0.738

TGRASP-I 15.000 0.187 0.779 0.760

BGRASP-II 7.500 0.219 0.507 0.795

TGRASP-II 9.000 0.214 0.293 0.855

NSGA-II 2.500 – – 0.390

Table 6 Mean C(A,B) measure
for two instances from (500,20) Dominance BGRASP-I TGRASP-I BGRASP-II TGRASP-II NSGA-II

BGRASP-I 0.000 0.333 0.242 0.231 0.000

TGRASP-I 0.286 0.000 0.333 0.256 0.000

BGRASP-II 0.429 0.333 0.000 0.379 0.333

TGRASP-II 0.429 0.378 0.439 0.000 0.333

NSGA-II 0.095 0.089 0.030 0.179 0.000

those feasible solutions that are efficient with respect to the dispersion measure and
the maximum deviation with respect to the average number of customers.

The same data sets described in the previous section were used for feeding
the NSGA-II approach. This means that 20 instances of each size ((500,20) and
(1000,50)) were tested. Experimental results showed that NSGA-II significantly
struggles when attempting to generate feasible solutions to the problem. Feasible so-
lutions were found just for 2 out of 20 instances tested from (500, 20) and no feasible
solutions were reported for those 20 instances from (1000, 50). This poor behavior is
explained mainly by the presence of the connectivity constraints, which are very hard
to satisfy under this scheme. Thus, this is one of these highly constrained combinato-
rial problems for which a method, such as the proposed GRASP, that better exploits
the problem structure makes a tremendous difference.

An analysis of performance over those 2 instances solved by NSGA-II was carried
out. Table 5 shows the metric average values for these instances. Observe that NSGA-
II reported the lowest number of efficient points and the lowest value of SSC. The
k-distance (mean and max) metric could not be computed given that we used a k = 4
and the NSGA-II did not report more than 3 efficient solutions for these instances.

The metric of coverage of two sets is showed in Table 6. In this table both
BGRASP-I and TGRASP-I do not cover any of the efficient points generated by
NSGA-II. In contrast, both BGRASP-II and TGRASP-II have a mean coverage of
33.3% over those efficient points reported by NSGA-II. And the highest coverage of
NSGA-II is that one with 17.9% over those efficient points generated by TGRASP-II.

Figure 3 shows one of the instances that were solved by NSGA-II. The number of
efficient points reported by NSGA-II are dramatically shorter than those reported by
our proposed strategies (Table 5 shows this fact too). It is evident that the proposed
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Fig. 3 GRASP strategies vs.
NSGA-II, instance
ds_500_20-04

Fig. 4 Pareto front
(TGRASP-I) for a real-world
case with 1999 BUs and 50
territories

GRASP strategies clearly outperform the NSGA-II approach for this territory design
problem.

4.3 Case study

A real-world instance with 1999 BUs and 50 territories was solved by applying one
of our proposed procedure (TGRASP-I). The maximum number of moves in the post-
processing phase was set to 3000, and the quality parameter in the RCL was α = 0.05.
During the fine-tuning this α value was better for this particular instance size. The rest
of the input parameters are the same as in Sect. 4.1. Figure 4 shows the approximated
front reported by TGRASP-I. It is important to mention that the firm solves the terri-
tory design problem around twice a year. Moreover, the planning department has tried
to generate a territory design plan by minimizing a single-objective function, specifi-
cally the dispersion measure. For the instance tested in this work, they did not obtain
feasible solutions even for the single-objective problem. In contrast, TGRASP-I re-
ported approximate efficient solutions in less than 3 hours. Note that all of them are
feasible solutions. Therefore, the proposed strategies are a very good alternative for

Author's personal copy



198 M.A. Salazar-Aguilar et al.

the firm since these strategies are able to generate more than one attractive solution
for the decision maker.

5 Conclusions

In this paper we have presented a GRASP approach for a bi-objective territory de-
sign problem with territory dispersion and customer balancing minimizing criteria.
Two different variants (BGRASP and TGRASP) are implemented within the GRASP
framework. For each variant, two different strategies for BGRASP and TGRASP
are studied. Strategy I means that the connectivity requirement is holding as a hard
constraint during all GRASP procedure. In contrast, strategy II means that the con-
nectivity requirement is put away during the construction phase and incorporated as
an objective function during the post-processing phase.

We carried out an evaluation of these GRASP strategies based on perfor-
mance measures used in multiobjective optimization. These measures are: num-
ber of points, size of the space cover (SSC), k-distance, and coverage of two sets
measure. The strategies were applied to two different instance sets of (n,p) ∈
{(500,20), (1000,50)}. For each of these sets, 20 instances based on real-world data
provided by the industrial partner were used.

We observed that BGRASP-II presents the best mean performance over all multi-
objective metrics. That means it is important to take control of the territories growth
during the construction phase and diversify the search allowing unconnected terri-
tories. Therefore, these solutions have small infeasibility with respect to the sales
volume at the beginning of the post-processing phase. Even thought these are un-
connected, the relinked local search allows to reach feasibility for both balance and
connectivity constraints in an efficient way.

The GRASP was compared with NSGA-II, a state-of-the-art evolutionary method
for multiobjective combinatorial optimization problems. NSGA-II was tailored to this
specific application. Empirical work show the proposed GRASP, under any strategy,
significantly outperformed NSGA-II. In many cases, NSGA-II was unable to find fea-
sible solutions to the problem, struggling particularly on satisfying the connectivity
constraints. In contrast, the GRASP strategies proposed in this work reported feasible
solutions for all instances tested.

In addition, a real-world instance provided by the industrial partner was solved
successfully by using the TGRASP-I scheme. The company has not generated feasi-
ble solutions for this instance, even for the single-objective version of the problem.
Our proposed strategy reported efficient (feasible) solutions for this case.

We have developed a very efficient method for addressing biobjective commercial
territory design. A natural extension to this work is to incorporate in the model other
criteria such as routing costs for instance. This would imply of course taking both
design and routing decisions at the same level, and a greater challenge from the com-
putational efficiency perspective, but several of the methods and concepts developed
in this work can be used to this end.
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