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a UPAEP University, 21 Sur 1103, Puebla, Puebla 72410, Mexico
b Graduate Program in Systems Engineering, Universidad Autónoma de Nuevo León, AP 111-F, Cd. Universitaria, San Nicolás de los Garza, Nuevo León

66450, Mexico
c Tecnologico de Monterrey, E. Garza Sada Sur 2501, Monterrey, Nuevo León 64849, Mexico
a r t i c l e i n f o

Article history:

Received 15 February 2012

Accepted 18 January 2013
Available online 29 January 2013

Keywords:

Metaheuristic

Multiobjective

Supply chain design

Location

Transportation
73/$ - see front matter & 2013 Elsevier B.V. A

x.doi.org/10.1016/j.ijpe.2013.01.017

esponding author. Tel.: þ52 222 229 9400x7

ail addresses: elias.olivares@upaep.mx,

ares@hotmail.com (E. Olivares-Benitez), roge

os-Mercado), gonzalez.velarde@itesm.mx (J.L
a b s t r a c t

This paper addresses a supply chain design problem based on a two-echelon single-product system.

In the first echelon the plants transport the product to distribution centers. In the second echelon the

distribution centers transport the product to the customers. Several transportation channels are

available between nodes in each echelon, with different transportation costs and times. The decision

variables are the opening of distribution centers from a discrete set, the selection of the transportation

channels, and the flow between facilities. The problem is modeled as a bi-objective mixed-integer

program. The cost objective aggregates the opening costs and the transportation costs. The

time objective considers the longest transportation time from the plants to the customers. An

implementation of the classic epsilon-constraint method was used to generate true efficient sets for

small instances of the problem, and approximate efficient sets for larger instances. A metaheuristic

algorithm was developed to solve the problem, as the major contribution of this work. The

metaheuristic algorithm combines principles of greedy functions, Scatter Search, Path Relinking and

Mathematical Programming. The large instances were solved with the metaheuristic algorithm and a

comparison was made in time and quality with the epsilon-constraint based algorithm. The results

were favorable to the metaheuristic algorithm for large instances of the problem.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In recent years Supply Chain Design has been addressed by
many authors, and several reviews have been published (Aikens,
1985; Thomas and Griffin, 1996; Vidal and Goetschalckx, 1997;
Beamon, 1998; Klose and Drexl, 2005; Sahin and Sural, 2007;
Melo et al., 2009). The decisions imply strategic aspects related
with location, capacities and technology selection, and tactical
aspects like product allocation and transportation flows, among
others.

In this paper we address a previous work by the authors
(Olivares-Benitez et al., 2012) where a supply chain design
problem, based on a two-echelon single-product system was
introduced. The problem considers the location of facilities, the
selection of transportation channels, the calculation of the flows
between facilities, and the time-cost tradeoff. In particular, the
selection of transportation channels produces a bi-objective
optimization problem where cost and lead time must be
ll rights reserved.
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. González-Velarde).
minimized. The transportation channels can be seen as transpor-
tation modes (rail, truck, ship, airplane, etc.), shipping services
(express, normal, overnight, etc.) or as transportations offers from
different companies. Each option has a cost and time associated,
and one must be selected to transport the product between nodes
in each echelon. The problem was solved in an a posteriori

approach, obtaining the non-dominated solutions set to be pre-
sented to the decision maker.

The objective in this new research was to develop a metaheur-
istic algorithm to solve the problem introduced by Olivares-
Benitez et al. (2012). It was demonstrated that the problem
belongs to the NP-Hard type. Hence it is necessary to use a
heuristic method to solve large instances of the problem. The
metaheuristic algorithm proposed here hybridizes elements from
greedy functions, Scatter Search, Path Relinking, and Mathema-
tical Programming. This type of hybrids, also named matheuris-
tics, is being used in recent research but there are not applications
in supply chain design yet.

The review in Section 2 describes works that connect the cost-
time tradeoff in supply chain design, and in the most recent
studies, the consideration of time tied to transportation decisions
in multiobjective problems. According to the analysis, the use of
matheuristic algorithms and transportation channel selection in
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the context of supply chain design represent major contributions
of this paper.

The problem addressed along with the mathematical model is
described in detail in Section 3. The methods used to solve the
problem are detailed in Section 4. For small instances the epsilon-
constraint based algorithm proposed by Olivares-Benitez et al.
(2012) was used to obtain the true efficient sets. The largest
instance solved with the epsilon-constraint based algorithm to
obtain its true efficient set has 5 plants, 5 potential distribution
centers, and 20 customers. To construct approximate efficient sets
for larger instances the same method was used with a time limit
of 3600 seconds per point. Given the complexity of the problem, a
metaheuristic algorithm was developed in this work to obtain
approximate efficient sets for large instances. The largest instance
where an approximate efficient set was obtained has 50 plants, 50
potential distribution centers, and 100 customers. The generation
of instances and the computational evaluation are described in
Section 5. Finally, Section 6 presents the conclusions of this work.
2. Literature review

One characteristic that differentiates the problem introduced
by Olivares-Benitez et al. (2012) from previous works in the
literature is the study of the tradeoff between lead time and cost
in the supply chain design, related to transportation choices. The
review by Current et al. (1990) makes evident that the balance of
these criteria had not been studied extensively. After that,
Arntzen et al. (1995) addressed the supply chain design problem
for a company that handled the cost-time tradeoff as a weighted
combination in the objective function. The decision variable was
the quantity of product to be sent through each transportation
mode available. Transportation time was variable with respect to
the quantity shipped. The problem was solved using elastic
penalties for violating constraints, and a row-factorization tech-
nique. Zeng (1998) emphasized the importance of the lead time-
cost tradeoff, associated to the transportation modes available
between pairs of nodes in the network. A mixed-integer program-
ming model was proposed to design the supply chain optimizing
both objectives. In this work facility location was not addressed.
The method proposed was a dynamic programming algorithm to
construct the efficient frontier assuming the discretization of
time. In the model proposed by Graves and Willems (2005) cost
and time were combined in the objective function. The supply
chain was configured selecting alternatives at each stage of the
production and distribution network. A dynamic programming
algorithm was used to solve this problem.

In recent years multiobjective problems in supply chain design
have been treated with more emphasis taking advantage of
increased computational resources and new methods. Chan
et al. (2006) presented a multi-objective model that optimized a
combined objective function with weights. Some of the criteria
included cost and time functions, and one of the components of
time was transportation time. Transportation time varied linearly
with the quantity transported. The model included stochastic
components, but facility location was not considered. A genetic
algorithm was the base of an iterative method where scenarios
with changing weights were solved. Altiparmak et al. (2006)
proposed a model with three objective functions: to minimize
total cost, to maximize total customer demand satisfied, and to
minimize the unused capacity of distribution centers. Here,
transportation time was handled as a constraint that determined
a set of feasible distribution centers able to deliver the product to
the customer before a due date. They proposed a procedure based
on a genetic algorithm to obtain a set of non-dominated solutions.
In the work by ElMaraghy and Majety (2008) a model was
proposed to optimize cost, including the cost of late delivery.
The model considered the dynamic nature of the decisions. They
used commercial optimization software to solve the model,
analyzing different scenarios. The review by Farahani et al.
(2010) about multi-criteria models for facility location problems
describes some works where metrics of cost and service level are
considered. The metaheuristic methods mentioned include multi-
objective versions of Scatter Search, Tabu Search, Simulated
Annealing, Ant Colony Optimization (ACO), and Particle Swarm
Optimization (PSO). However, some other metaheuristics that
were created for multiobjective applications were also
mentioned, like Simple Evolutionary Algorithm for Multi-
Objective Optimization (SEAMO), Strength Pareto Evolutionary
Algorithm version 2 (SPEA2), Pareto Envelop based Selection
Algorithm (PESA), Non-dominated Sorting Genetic Algorithm II
(NSGA-II), Vector Evaluated Genetic Algorithm (VEGA), and the
Multi-Objective Genetic Algorithm (MOGA).

More recently, several works have appeared for multiobjective
supply chain design. Pishvaee et al. (2010) studied a model for a
forward/reverse logistics network design from a bi-objective
optimization perspective. The objectives to optimize were the
total cost of the system and the fulfillment of the demand and
return rates. Although they considered lead time into their model,
similar to Altiparmak et al. (2006) it was considered in the
meeting of a due date, and not related to transportation alter-
natives. They developed a memetic algorithm to solve this NP-
hard problem. Moncayo-Martinez and Zhang (2011) proposed a
model similar to that of Graves and Willems (2005) where
activities must be selected to design the supply chain. This was
a bi-objective model that optimized cost and lead time in a multi-
echelon network. The decision variable is the selection of the
resource for a certain activity in the supply chain. They used a
Pareto Ant Colony Optimization metaheuristic to obtain the
Pareto Optimal Set. Liao et al. (2011) also studied a multiobjective
problem for supply chain design. In this case they integrated
location and inventory decisions. The objectives were the mini-
mization of cost, the maximization of the fill rate, and the
maximization of demand fulfilled within a coverage distance.
The lead time was implied in the cost of the safety stock, but it
was not related to transportation decisions. The method proposed
was a hybrid of NSGA-II and an assignment heuristic. Pinto-Varela
et al. (2011) presented a bi-objective optimization model for the
design of supply chains considering economic and environmental
criteria. In their model, time was considered since the point of
view of a multi-period approach. Different transportation modes
may exist, but they are not associated to the time. They solved
three small examples with mathematical programming commer-
cial software. The review by Mansouri et al. (2012) emphasized
the importance of multiobjective optimization techniques as
decision support tool in supply chain management. Although
order promising decisions and network design decisions were
identified as important criteria, none of the works reviewed
integrated them in a multiobjective approach. Chaabane et al.
(2012) presented a multi-period multiobjective optimization
problem where cost and environmental objectives were opti-
mized. In their mixed-integer programming model, the selection
of transportation modes was considered as a decision variable but
it was not connected with time. They used mathematical
programming commercial software to solve small instances of
the problem. Sadjady and Davoudpour (2012) studied a problem
for supply chain design where cost and time were tied to
transportation alternatives. The approach, however, was to opti-
mize a single objective function where lead time from the
transportation alternative was transformed into a cost function.
The cost objective function is optimized using a Lagrangian
relaxation method. As proposed by Olivares-Benitez et al.



Fig. 1. Single product, single period, and two-echelon distribution system. Each

transportation channel has a time (TPijl, TWjkl) and a unitary cost (CPijl, CWjkl)

associated.

Source: Olivares-Benitez et al. (2012).
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(2012), the cost and time criteria may not be comparable and
should be treated in separate objectives.

It is important to highlight some works that solve real cases for
supply chain design. Altiparmak et al. (2006) applied their genetic
algorithm for a supply chain design for plastic products in Turkey.
Pati et al. (2008) solved a case for the Indian paper recycling
industry. Sousa et al. (2008) applied their models for the design of
an agrochemicals supply chain. Gumus et al. (2009) solved the
case for a company in the alcohol free beverage sector. Moncayo-
Martinez and Zhang (2011) applied a Pareto Ant Colony Optimi-
zation metaheuristic to design a supply chain for Bulldozer
production. Pinto-Varela et al. (2011) presented a bi-objective
model for designing supply chains in Portugal. Chaabane et al.
(2012) solved a case for aluminum production. Funaki (2012)
proposed a very complete model and a dynamic programming
algorithm to design a supply chain for a machinery product.
Marvin et al. (2012) formulated a mixed integer linear program-
ming problem to design a supply chain for ethanol biorefining.
Paksoy et al. (2012) applied fuzzy optimization for the design of a
vegetable oil supply chain. These works illustrate an increasing
interest in the application of supply chain design models in
industry.

Finally, it is interesting to note the review by Griffis et al.
(2012) where they presented the use of metaheuristics in logistics
and supply chain management from year 1991 to 2012. Near 15%
of the applications were in the area of supply chain design. They
highlight the use of Simulated Annealing and Tabu Search among
local search metaheuristics, with minor attention in the literature
to greedy randomized adaptive search procedure (GRASP), vari-
able neighborhood search (VNS) and others. In terms of popula-
tion search techniques, the most popular have been Genetic
Algorithms and Ant Colony Optimization, with fewer mentions
for Scatter Search, Particle Swarm Optimization, and others.
However in this review it is evident the few applications of
multiobjective metaheuristics, especially for supply chain design
problems.

The research described above shows that few works consid-
ered the cost-time tradeoff derived from the transportation
channel selection in the supply chain design. Other differences
with the problem addressed in this research are explained in the
following lines. First, in some works the transportation time is a
linear function of the quantity transported. In the model
presented here, a single time is used for each arc between nodes,
which represents more real conditions in the operation of
transportation. Second, in many studies the time-cost tradeoff
has been addressed from a single objective perspective transform-
ing the time in a cost function. Here, the time and cost are treated
as separate criteria allowing for the construction of sets of
non-dominated solutions. This approach may be a good choice
when the preference of the decision maker for one of the
objectives is not known, or when the criteria cannot be compared
easily. Third, in many multiobjective problems for supply chain
design, the cost-time tradeoff was not associated to the selection
of the transportation channel. In the problem addressed here, the
selection of transportation from several alternatives has a direct
impact in the lead time objective. The combination of these
elements and traditional supply chain design decisions makes
relevant the problem addressed, and the necessity to solve it.

In terms of the algorithm developed here, what we propose is
a hybridization of greedy functions with Scatter Search, Path
Relinking and mathematical programming software, which
produces high quality solutions for a complex problem. In the
literature, the techniques preferred to solve these multiobjective
problems with the a posteriori approach are variations of evolu-
tionary algorithms. The type of hybrids presented in this work,
also named matheuristics, has not been used before in the context
of supply chain design problems. However other applications can
be seen in the book edited by Maniezzo et al. (2010).
3. Problem description and mathematical model

The problem introduced by Olivares-Benitez et al. (2012) was a
two-echelon distribution system for one product in a single time
period. A set of manufacturing plants produce and send the
product to distribution centers in the first stage. Later, the
distribution centers transport the product to the customers. The
number and location of plants and customers, along with
demands and capacities respectively, are known. The distribution
centers must be selected from a discrete set of potential locations
with fixed opening costs and limited capacities. A single sourcing
policy was assumed for the transportation from the distribution
centers to the customers. Fig. 1 depicts the structure of the
supply chain.

The transportation of the product from one facility to the other
in each echelon of the network is done selecting one of several
alternatives available. Each transportation channel represents a
type of service with associated cost and time parameters. These
alternatives can be obtained from offers of different companies,
the availability of different types of service for each company
(e.g. express and regular), or the use of different modes of
transportation (e.g. truck, rail, airplane, ship or inter-modal). It
was assumed that a faster service is usually more expensive. The
capacity of the transportation channel was assumed as unlimited,
considering that any capacity can be contracted.

A bi-objective mixed-integer programming model was
proposed to solve the problem described previously, as follows.
Sets:

I : set of plants i

J : set of potential distribution centers j

K : set of customers k

LPij : set of arcs l between nodes i and j; iAI, jAJ
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LWjk : set of arcs l between nodes j and k; jAJ, kAK

Parameters:

CPijl : cost of transporting one unit of product from plant i to
distribution center j using arc l; iAI, jAJ, lALPij

CWjkl : cost of sending one unit of product from distribution
center j to customer k using arc l; jAJ, kAK, lALWjk

TPijl : time for transporting any quantity of product from
plant i to distribution center j using arc l; iAI, jAJ, lALPij

TWjkl : time for transporting any quantity of product from
distribution center j to customer k using arc l; jAJ, kAK,
lALWjk

MPi : capacity of plant i; iAI

MWj : capacity of distribution center j; jAJ

Dk : demand of customer k; kAK

Fj : fixed cost for opening distribution center j; jAJ

Decision variables:

Xijl : quantity transported from plant i to distribution center
j using arc l; iAI, jAJ, lALPij

Yjkl : quantity transported from distribution center j to
customer k using arc l; jAJ,

Zj : binary variable equal to 1 if distribution center j is
open and equal to 0 otherwise; jAJ

Aijl : binary variable equal to 1 if arc l is used to transport
product from plant i to distribution center j and equal to
0 otherwise; iAI, jAJ, lALPij

Bjkl : binary variable equal to 1 if arc l is used to transport
product from distribution center j to customer k and
equal to 0 otherwise; jAJ, kAK, lALWjk

Auxiliary variables:

T : longest time that takes sending product from any plant
to any customer

E1
j : longest time in the first echelon of the supply chain for

active distribution center j, i.e. E1
j ¼max

i,l
ðTPijlAijlÞ; iAI,

jAJ, lALPij

E2
j : longest time in the second echelon of the supply chain

for active distribution center j, i.e. E2
j ¼max

k,l
ðTWjklBjklÞ;

jAJ, kAK, lALWjk

MODEL 1:

minðf 1,f 2Þ

f 1 ¼
X
iA I

X
jA J

X
lA LPij

CPijlXijlþ
X
jA J

X
kAK

X
lA LWjk

CWjklYjklþ
X
jA J

FjZj ð1Þ

f 2 ¼ T ð2Þ

subject to

T�E1
j �E2

j Z0 jA J ð3Þ

E1
j �TPijlAijlZ0 iA I, jA J, lALPij ð4Þ

E2
j �TWjklBjklZ0 jA J, kAK , lALWjk ð5Þ

P
jA J

P
lALWjk

Yjkl ¼Dk kAK
ð6Þ

P
jA J

P
lALPij

XijlrMPi iA I
ð7Þ
MWjZj�
P

kAK

P
lALWjk

YjklZ0 jA J
ð8Þ

P
iA I

P
lA LPij

Xijl�
P

kAK

P
lA LWjk

Yjkl ¼ 0 jA J
ð9Þ

P
jA J

P
lA LWjk

Bjkl ¼ 1 kAK
ð10Þ

P
lALPij

Aijlr1 iA I, jA J
ð11Þ

P
lA LWjk

Bjklr1 iA I, jA J
ð12Þ

Xijl�AijlZ0 iA I, jA J, lALPij ð13Þ

Yjkl�BjklZ0 jA J, kAK , lALWjk ð14Þ

MPiAijl�XijlZ0 iA I, jA J, lALPij ð15Þ

MWjBjkl�YjklZ0 jA J, kAK , lALWjk ð16Þ

P
iA I

P
lA LPij

Aijl�ZjZ0 jA J
ð17Þ

T ,E1
j ,E2

j ,Xijl,YjklZ0 iA I, jA J, kAK , lALPij, lALWjk ð18Þ

Zj,Aijl,BjklAf0,1g iA I,jA J,kAK ,lALPij,lALWjk ð19Þ

In this model, objective function Eq. (1) minimizes the sum of
the transportation cost and the cost for opening distribution
centers. Objective function Eq. (2) minimizes the longest trans-
portation time from the plants to the customers through each
distribution center. Constraints Eqs. (3)–(5) calculate the longest
transportation time in each echelon for each distribution center.
Constraints Eq. (6) force the demand satisfaction for each custo-
mer. Constraints Eq. (7) imply that the capacities of the plants are
not exceeded. Constraints Eq. (8) meet two conditions: that the
flow going out from a distribution center must not exceed its
capacity, and that the flow of product is done only through open
distribution centers. Constraints Eq. (9) keep the flow balance at
each distribution center. Constraints Eq. (10) force the single
source policy from distribution centers to customers. The selec-
tion of only one transportation channel between facilities is
required in constraints Eq. (11) and Eq. (12). Constraints Eqs.
(13)–(17) establish links between the sets of variables Aijl, Bjkl, Xijl,
Yjkl and Zj to avoid incoherent solutions. Constraints Eqs. (18) and
(19) are for declaration of variables.

About the computational complexity of the problem, it has
been demonstrated that the well-known UFLP (Uncapacitated
Fixed-Charge Facility Location Problem) is polynimially reducible
to the model described above (Olivares-Benitez et al., 2012). Since
the UFLP is NP-hard (Cornuejols et al., 1990), the model above is
NP-hard too.
4. Exact and metaheuristic methods

4.1. Exact method

The method selected for generating true efficient sets was the
epsilon-constraint method. In a multiobjective optimization
problem, this method optimizes a series of single objective sub-
problems. One of the objective functions is selected to be
optimized and the other objective functions are transformed into



Fig. 2. Generalized Assignment Problem (GAP) and Transportation Problem (TP) in

the hierarchical construction procedure.
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constraints and added to the set of constraints, as follows.

minff kðxÞ : f iðxÞrei,iak,xAXg

where f¼(f1,y,fp) is the set of p real-valued objective functions, x

is a solution to the problem and X is the set of feasible solutions.
The values of vectors ei are changed systematically to obtain the
efficient frontier for the problem. Further details can be seen in
Steuer (1989) and Ehrgott (2005) as references.

Olivares-Benitez et al. (2012) developed an implementation of
the epsilon-constraint method that uses the solutions generated
during the process to accelerate the construction of the true
efficient set. This version of the epsilon-constraint method,
named ‘‘Backward epsilon-constraint method with estimated
lower limit for f2’’ (ReC), was used to construct the true efficient
sets for several small instances generated artificially. The proce-
dure was coded in ANSI C. The single-objective subproblems of
the epsilon-constraint based algorithm were solved using the
CPLEX 11.1 callable library (ILOG, 2008).

4.2. Metaheuristic method

Because of the computational complexity of the problem, rela-
tively large instances may no longer be tractable from an exact
optimization perspective. Thus the development of a heuristic
method is suitable to find an approximate set of efficient solutions.
In this work we propose a metaheuristic algorithm to approximate
efficient sets of the problem for large instances. This is a population-
based metaheuristic that uses some principles of Scatter Search,
Path Relinking (Laguna and Marti, 2003), greedy functions and
mathematical programming. Historically, greedy functions have
been used in the design of heuristics to solve hard combinatorial
optimization problems. In the framework of metaheuristics, greedy
functions are used to construct initial solutions in the GRASP
(Resende and Ribeiro, 2003; Talbi, 2009) and are used for a good
approximation in other local search heuristics. Several metaheuristic
implementations have combined effectively GRASP and Scatter
Search or GRASP and Path Relinking to tackle difficult combinatorial
optimization problems, and recently this hybridization has been
proposed for multiobjective combinatorial optimization problems
(Marti et al., 2011). In the metaheuristic proposed in this work we
wanted to keep the good approximation achieved by greedy func-
tions with the population-based approach given by Scatter Search to
construct approximate efficient sets. Additionally, the use of Path
Relinking was added to improve the quality of the solutions
obtained in a final combination stage. This hybrid also uses
mathematical programming software embedded into the metaheur-
istic algorithm. This idea is being studied in recent works (Maniezzo
et al. 2010) to increase the power of metaheuristic algorithms.

The metaheuristic algorithm proposed in this work is composed
of three main methods. These are a constructive method, an
improvement method, and a combination method. These methods
use a basic procedure to construct a solution based on a decom-
position of the problem. It is important to explain this hierarchical
construction procedure before going to the details of the methods.

4.2.1. Hierarchical construction procedure

A solution is constructed hierarchically starting with the selec-
tion of the distribution centers to be opened. Each method uses a
specific strategy to perform this selection as will be described below.
The next decision in the hierarchy is the selection of the transporta-
tion channel between each pair of facilities. The selection of the
transportation channel is done using a weighted greedy function.
This greedy function has a component based on the transportation
cost and the other component based on the transportation time as
shown in Eqs. (20) and (21). These functions are normalized to avoid
the scaling problem. A higher value of the greedy function implies a
worse selection considering that both criteria, time and cost, are
minimized:

f arcijl

� �
¼ lc

CPijl

max
iA I, jA J, lA LPij

ðCPijlÞ
þlt

TPijl

max
iA I, jA J, lALPij

ðTPijlÞ
ð20Þ

f arcjkl

� �
¼ lc

CWjkl

max
jA J, kAK , lA LWjk

ðCWjklÞ
þlt

TWijl

max
jA J, kAK , lA LWjk

ðTWjklÞ
ð21Þ

The weights lc and lt for the greedy functions are systematically
changed each iteration of the constructive method and inherited
through the rest of the algorithm. The aim of weights variation is to
obtain solutions well distributed along the efficient frontier instead
of a concentration of solutions in the extremes of the frontier. More
details about the procedure to calculate these weights are given
below in the explanation of the constructive method.

Once the transportation channel with the best value is selected,
the problem can be decomposed by echelon. First, the flow of
product from distribution centers to the customers can be obtained
solving a generalized assignment problem (GAP) as depicted in
Fig. 2. The solution to the GAP assigns customers to distribution
centers, and all the demand of the customer is satisfied by the
distribution center assigned. The costs used in the formulation of the
GAP correspond to the values of the greedy functions fðarcjklÞ. Later,
the flow of product from the plants to the distribution centers is
obtained solving a transportation problem (TP) as shown in Fig. 2.
The demand at the open distribution centers is the sum of the
demands of the customers assigned to them previously. In this step
the costs in the TP are the values of the greedy functions fðarcijlÞ.
This basic procedure is called to construct a solution in each method.
The GAP and the TP are solved using mathematical programming
commercial software.

4.2.2. General algorithm

The scheme of the algorithm proposed is presented in Fig. 3.
A strategy of elitism is used to avoid losing solutions after each
method and then converging toward the true efficient set. The
solutions from the constructive and improvement methods are used
to update the approximate efficient set NDS (Non-dominated Solu-
tions) using the dominance relation of the new solutions with
respect to those already in NDS. After the execution of each method
a reference set (RS) is constructed combining the solutions in
the updated set NDS and the ‘‘diverse’’ solutions obtained from the
method. The diverse solutions are selected among those close to the
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current set NDS in the objective functions space. The dotted lines in
Fig. 4 represent calls and updates to the NDS set. Finally, in the post-
processing stage the last set RS is used in the combination method.
The solutions obtained in this method are used to update the
approximate efficient set NDS. The final result of the algorithm is
the approximate efficient set in the last NDS set.
Method Constructive
Input:      Instance data; Number of Constructed Solu
Output:   Set of Constructed Solutions, CS = { sr | r 

message. 
BEGIN
01. Check general feasibility of the instance under th

� MPi ≥
i∈I k∈K

� Dk ,
∈∈

≥
KkJj

� �MWj

02. If the instance is infeasible: 
03. Return message of infeasibility. 
04. Else: 
05. CS = ∅.
06. For r = 1, …, NCS:
07. Initialize Zj = 0, Aijl = 0, Bjkl = 0, i ∈ I, j
08. Initialize sr is incomplete. 
09. Calculate the vector [ r

t
r
c λλ , ] for solution

10. Calculate the aggregated greedy functio
equations (20) – (21). 

11. While solution sr is incomplete and the i
12. While ��

∈∈

<
Kk

k
Jj

jj DMWZ :

13. Select randomly a distribution c
14. End While. 
15. Set of open distribution centers J’ =
16. sr = Hierarchical construction pro
17. If sr is infeasible: 
18. If | J’ | < | J |: 
19. Go To Step 13 to open anothe
20. Else: 
21. Return a message of infeasibi
22. End If. 
23. Else: 
24. CS = CS ∪ {sr} and the associated

solution sr.
25. End If. 
26. End While. 
27. End For. 
28. Return the set CS in the output file.  
29. End If 
END

Fig. 4. Algorithm for the

Fig. 3. Scheme of the metaheuristic algorithm.
The constructive method generates a fixed number of solutions.
For each solution, the selection of the distribution centers to be
opened is done randomly. The weights (lc, lt) for the greedy
functions in Eqs. (20) and (21) are generated systematically for each
solution in a linear combination between (1�lf, 0) and (0, 1�lf),
considering the total number of solutions to be generated. These
weights lc and lt are used to select the transportation channels in
each solution, and their values are inherited through the rest of the
algorithm. Although the distributions centers are selected randomly
in the constructive method, they conserve assigned values of lc and
lt for their application in the rest of the algorithm. The parameter lf

represents the relative frequency of selection of a certain arc or
distribution center with respect to the total number of constructed
solutions along the iterations. The parameter lf is updated for each
iteration of the constructive method. This long term memory
promotes the selection of new elements for each iteration of the
constructive method. Once the distribution centers are selected for
each generated solution, the hierarchical construction procedure is
called to complete the construction of that solution. The algorithm
for the constructive method is shown in Fig. 4.

The solutions obtained in the constructive method create
and update a set of non-dominated solutions called NDS. The
solutions in NDS are included in a reference set named RS. To
provide variety to the reference set some dominated solutions are
tions (NCS). 
= 1,…, NCS} or general infeasibility 

e following conditions: 
Dk

∈ J, k ∈ K, l ∈ LPij, l ∈ LWjk.

 sr.
n for each element ( ) ( )jklijl arcarc φφ ,  using 

nstance is feasible: 

enter j’ ∈ J, Zj’ = 1. 

 {j ∈ J | Zj = 1}. 
cedure (J’). 

r distribution center. 

lity for the instance. 

 vector [ r
t

r
c λλ , ] is stored in the structure of the 

constructive method.
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included. These dominated solutions are taken from the points
closest to the current efficient frontier in NDS.

To guide movements in the improvement and combination
methods, a greedy function for the distributions centers was
formulated, similar to that of the arcs, as shown in Eqs. (22–24).

fc dcj

� �
¼

Fjþ
P

iA IMPimaxlALPij
ðCPijlÞþ

P
kAK DkmaxlA LWjk

ðCWjklÞ=MWj

maxjA JðFjþ
P

iA IMPimaxlALPij
ðCPijlÞþ

P
kAK DkmaxlA LWjk

ðCWjklÞ=MWjÞ

ð22Þ

ft dcj

� �
¼

miniA I,lALPijl
ðTPijlÞþminkAK ,lA LWjkl

ðTWjklÞ

maxjA J miniA I,lALPijl
ðTPijlÞþminkAK ,lALWjkl

ðTWjklÞ

� � ð23Þ
Fig. 5. Scheme of the acceptance criterion and direction of improvement.

Method Improvement
Input:  Instance data; Reference set of solutions RS ;
Output:  Approximate efficient set NDS updated. 
BEGIN
01. For each s ∈ RS:
02. Current solution s’ = s.
03. Exit_local_search = 0. 
04. While Exit_local_search = 0: 
05. Initialize the set of improved solutions I
06. Obtain solution sc or infeasibility mess

(s’).
07. NDS = Update NDS set (sc, NDS).
08. If sc meets the acceptance criterion and
09. Obtain solution so or infeasibility messa

(s’).
10. NDS = Update NDS set (so, NDS).
11. If so meets the acceptance criterion and
12. Obtain solution se or infeasibility messa

(s’).
13. NDS = Update NDS set (se, NDS).
14. If se meets the acceptance criterion and
15. If IS ≠ ∅:
16. Select randomly a solution ŝ ∈ IS
17. New current solution s’ = ŝ.
18. Else: 
19. Exit_local_search = 1. 
20. End If. 
21. End While. 
22. End For. 
END

Fig. 6. Algorithm for the i
fðdcjÞ ¼ lcf
c
ðdcjÞþltf

t
ðdcjÞ ð24Þ

The improvement method uses local search and explores three
types of neighborhoods for each solution in the reference set.
These correspond to movements of opening, closing and exchange
of distribution centers. For each neighborhood a sorted list is
created according to the value of the aggregated greedy function
fðdcjÞ in Eq. (24). Each element in the list is taken at a time in that
order as described below:
�

 Ap

S =
age 

 di
ge 

 di
ge 

 di

mpr
Closing of facilities CN (s). The open distribution centers are
sorted in descending order by fðdcjÞ value, i.e. from worst
to best.

�
 Opening of facilities ON (s). The closed distribution centers are

sorted in ascending order by fðdcjÞ value, i.e. from best
to worst.

�
 Exchange of facilities EN (s). The previous two lists are created.

One open facility is closed and one closed facility is opened.
The lists are explored taking as pivot the list for opening.

To accept one movement the dominance of the new solution is
considered. If an infeasible or dominated solution is created by
the movement, it is rejected. Fig. 5 shows the acceptance criterion
and direction of improvement where weakly and strongly non-
dominated solutions are accepted. A short term memory is
conserved to avoid cycling during the improvement method.
After a movement is done, the dashed areas in Fig. 5 indicate
the direction of improvement allowed for a new movement. The
algorithm for the improvement method is shown in Fig. 6.

After a number of iterations applying the constructive and
improvement methods, the combination method is used as a
post-processing stage. It is based on Path Relinking (Laguna and
Marti, 2003) to obtain a set of solutions for each pair of solutions
proximate efficient set NDS .

 ∅.
exploring the closing neighborhood CN

rection of improvement, IS = IS ∪ {sc}.
exploring the opening neighborhood ON 

rection of improvement, IS = IS ∪ {so}.
exploring the exchange neighborhood EN

rection of improvement, IS = IS ∪ {se}.

ovement method.
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from a reference set RS. One of the solutions is selected as
‘‘initiating solution’’ and the other is selected as ‘‘guiding solu-
tion’’. The combination makes movements in the vector of values
Zj of the distribution centers and completes a solution calling to
the hierarchical construction procedure. The path is constructed
giving priority to closing movements until infeasibility is found.
Then, a distribution center that was closed with respect to the
guiding solution is now opened. The construction of the path
follows giving preference to closing movements. The criterion
shown in Fig. 5 is used to accept these movements and the new
solutions are used to update the set of no-dominated solutions
NDS. Fig. 7 shows the algorithm for the combination method.
5. Computational evaluation

The specific goals accomplished by the experiments are as follows.
Firstly, to solve relative small size instances with the exact method to
have a reference to compare with the metaheuristic algorithm. Also, a
variation of the exact method was used to obtain approximate
Method Combination
Input:        Instance data; Reference set of solutions 
Output:    Approximate efficient set NDS updated.  
BEGIN
01. For ∀ (initiating solution) s∈RS: 
02. For ∀ (guiding solution) r∈RS: 
03. If s ≠ r and r

j
s
j ZZ ≠ ∀ j ∈ J:

04. Create sets FC and FO; Sort sets FC = {
( ) ( )

1+
≤

ii jj dcdc φφ }.

05. Create intermediate solution q, s
j

q
j ZZ = ∀

06. If partial solution q is feasible (based on a
07. Use the Hierarchical construction pro
08. If complete solution q is feasible: 
09. NDS = Update NDS set (q,NDS). 
10. End If. 
11. End If. 
12. n = 1, p = 1. 
13. While n ≤ |FC|:
14. Modify intermediate solution q making 
15. If partial solution q  is feasible (based
16. Use the Hierarchical construction p
17. If complete solution q is feasible: 
18. NDS = Update NDS set (q, NDS
19. Else:
20. n = n + 1; Go To Step 26. 
21. End If. 
22. Else:
23. n = n + 1; Go To Step 26. 
24. End If. 
25. End While. 
26. While p ≤ |FO|: 
27. Modify intermediate solution q making Z
28. If partial solution  is feasible (based on a
29. Use the Hierarchical constructionpro
30. If complete solution q is feasible: 
31. NDS = Update NDS set (q, NDS
32. Else:
33. p = p + 1; Go To Step 26. 
34. End If 
35. Else:
36. p = p + 1; Go To Step 26. 
37. End If. 
38. End While. 
39. End If. 
40. End For. 
41. End For. 
END

Fig. 7. Algorithm for the c
efficient sets for the comparison in larger instances. The variation
consisted in running the optimization software for each point of the
epsilon-constraint algorithm with a time limit of 3600 s. These
approximate efficient sets were compared with those obtained with
the metaheuristic algorithm to determine their quality, and the
computational run times were compared to evaluate the efficiency
of the metaheuristic algorithm.

To perform the computational study, instances of different
sizes were randomly generated as described in Olivares-Benitez
et al. (2012). The reader is invited to consult that work to have the
details of the parameters generation. The sizes generated are
shown in Table 1, where the group code indicates: [number of
plants–number of potential distribution centers–number of
customers–number of arcs between nodes].

5.1. True efficient sets

The ‘‘Backward epsilon-constraint method with estimated
lower limit for f2’’ (ReC) algorithm was used to solve the generated
instances (Olivares-Benitez et al., 2012). The procedure was coded
RS; Approximate efficient set NDS.  

j1, j2,… | ( ) ( )
1+

≥ ii jj dcdc φφ } and FO = { j1, j2,… | 

j ∈ J, r
c

q
c λλ = , r

t
q
t λλ = .

ccumulated capacity): 
cedure to complete solution q. 

0=q
jnZ , jn ∈ FC.

 on accumulated capacity): 
rocedure  to complete solution q.

); n = n + 1; Go To Step 13. 

0=q
jp

, jp ∈ FO.
ccumulated capacity): 
cedure to complete solution q.

); p = p + 1; Go To Step 13. 

ombination method.



Table 1
Generated instances.

Group code Number of

instances

Number of binary

variables

Number of

constraints

5-5-5-2 5 105 385

5-5-5-5 5 255 835

5-5-20-2 5 255 940

5-20-20-2 5 1020 3625

20-20-20-2 5 1620 5740

20-20-20-5 5 4020 12940

20-20-50-5 5 7020 22600

50-50-50-2 5 10050 35350

50-50-100-2 5 15050 52950

Group code indicates: [number of plants—number of potential distribution

centers—number of customers—number of arcs between nodes].
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Fig. 8. Set of non-dominated points for instance number 2 of group 5-5-5-5.

Source: Olivares-Benitez et al. (2012).
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in C and compiled with Visual Studio 6.0. The CPLEX 11.1 callable
library (ILOG, 2008) was used to solve optimally the sub-
problems involved in the epsilon-constraint based algorithm.
These routines were run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium
4 PC. The true efficient sets of the small instances of groups 5-5-5-
2, 5-5-5-5, and 5-5-20-2 were obtained. The run times were
recorded for comparison with the metaheuristic algorithm.

Fig. 8 shows the efficient frontier for the instance number 2 of
the group 5-5-5-5. The efficient frontier for the rest of the
mentioned instances is similar. The points are not connected
because of the discretization of time units. It is evident the
tradeoff between cost (f1) and time (f2).

5.2. Approximate efficient sets using the epsilon-constraint based

algorithm

To have a comparison for large instances, the ReC algorithm
was used with a time limit of 3600 s per each value of e. The
CPLEX 9.1 callable library (ILOG, 2005) was used to solve
optimally the sub-problems involved in the epsilon-constraint
based algorithm. These routines were run in a 3.0 GHz, 1.0 Gb
RAM, Intel Pentium 4 PC. The approximate efficient sets and the
run times were recorded for comparison with the metaheuristic
algorithm.

5.3. Approximate efficient sets using the metaheuristic algorithm

The metaheuristic algorithm was coded in C. The CPLEX
9.1 callable library (ILOG, 2005) was used to solve the GAP and
TP sub-problems generated within the algorithm. The algorithm
was run in a 3.0 GHz, 1.0 Gb RAM, Intel Pentium 4 PC. The number
of constructed solutions NCS in the metaheuristic algorithm was
set to 100 solutions. The number of iterations before the execu-
tion of the combination method was set to 10.

5.4. Comparisons

To make comparisons of the efficient frontiers obtained with
the algorithms several metrics were used. The computing time
and the number of non-dominated points 9Si9 are reported. The
ratio RPOS (Si) (Altiparmak et al., 2006) is calculated also. This ratio
is able to compare more than two efficient sets. To make the
computations, a reference efficient set P must be constructed with
the union of the efficient solutions of all the r sets, and the
dominated solutions are eliminated. This metric indicates the
ratio of points from the set Si that belong to the reference efficient
set P. A higher value of this metric is better, indicating the quality
of the approximate efficient set obtained.

Additionally, based on the features of the problem treated in
this work, a special metric was designed, although the principle
may be adapted to other bi-objective combinatorial optimization
problems. The discretization of objective f2 and the number of
objectives allows proceeding as follows for a pair of sets S1 and S2.
A set of values T is constructed with each value of objective f2

where values for objective f1 exist in both sets:

T ¼ ff 2ðsÞ3f 2ðs’Þ,sAS1,s0AS29(f 1ðsÞ4(f 1ðs
0Þ4f 2ðsÞ ¼ f 2ðs

0Þg

Then an average deviation Dave is calculated with the ratios of
objective f1 for each value of f2 in the set T, as shown in Eq. (25).

Dave ¼

P
tAT ff 1ðsÞ : f 2ðsÞ ¼ t=f 1ðs

0Þ : f 2ðs
0Þ ¼ tg

9T9
8sAS1, s0AS2 ð25Þ

The idea is very simple. For a fixed value of objective f2 the
ratio f1 (s)/ f1 (s0) is calculated only if the values of objective f1 are
available in both sets. Then the average of these ratios is
calculated. The minimum Dmin of these ratios is calculated with
Eq. (26).

Dmin ¼min
tAT

f 1ðsÞ : f 2ðsÞ ¼ t

f 1ðs
0Þ : f 2ðs

0Þ ¼ t

� �
8sAS1,s0AS2 ð26Þ

For these metrics Dave and Dmin, the true efficient sets and the
approximate efficient sets obtained with the ReC algorithm take place
in the computations as S2, and the approximate efficient sets obtained
with the metaheuristic algorithm are considered as S1.

Tables 2 and 3 show the results for five instances of each size.
The results of the epsilon-constraint based algorithm are identi-
fied with the code [ReC] and the results of the metaheuristic
algorithm are identified with the code [MH]. Table 2 presents the
comparison between the exact method and the metaheuristic
method, i.e. the true efficient sets and the approximate efficient
sets respectively. The results in Table 3 compare the performance
of the exact method with time limit and the metaheuristic
method, i.e. approximate efficient sets in both cases.

The comparison of results for each metric must be made as
follows. A greater value for 9Si9 and RPOS (Si) is better. These values
indicate the size and quality of the efficient frontier. A lower
value, less than or equal to 1.0, for metrics Dmin and Dave indicates
that the metaheuristic algorithm achieves lower cost (f1) com-
pared to the epsilon-constraint based algorithm, for the same
transportation time (f2).

A visual comparison of the efficient frontiers is shown in
Figs. 9 and 10 for a small instance and a very large instance
respectively. It is evident the trade-off between the cost and time
objectives, with best times for worse costs. It can be observed in
Fig. 9 that for small instances, the metaheuristic algorithm got
very close to the efficient frontier and in some points achieved the
true efficient solution. For large instances, like in the case of



Table 2
Comparison of results from the metaheuristic algorithm [MH] and the epsilon-constraint based algorithm [ReC] for small instances.

Group code Instance Total time (s) [MH] Total time (s) [ReC] 9SReC9 RPOS (ReC) 9SMH9 RPOS (MH) Dave Dmin

5-5-20-2 1 29 236 31 1.000 20 0.050 1.042 1.000

5-5-20-2 2 33 269 33 1.000 20 0.050 1.031 1.000

5-5-20-2 3 71 452 33 1.000 22 0.045 1.045 1.000

5-5-20-2 4 54 324 32 1.000 20 0.050 1.052 1.000

5-5-20-2 5 74 491 33 1.000 27 0.037 1.028 1.000

5-5-5-5 1 92 134 38 1.000 32 0.125 1.020 1.000

5-5-5-5 2 64 159 40 1.000 25 0.160 1.027 1.000

5-5-5-5 3 63 219 39 1.000 27 0.259 1.014 1.000

5-5-5-5 4 147 180 39 1.000 31 0.194 1.022 1.000

5-5-5-5 5 64 111 39 1.000 28 0.179 1.018 1.000

5-5-5-2 1 75 7 32 1.000 22 0.364 1.028 1.000

5-5-5-2 2 36 11 29 1.000 21 0.095 1.024 1.000

5-5-5-2 3 43 12 28 1.000 22 0.364 1.019 1.000

5-5-5-2 4 37 24 31 1.000 17 0.412 1.021 1.000

5-5-5-2 5 41 10 25 1.000 18 0.389 1.017 1.000

Group code indicates: [number of plants—number of potential distribution centers—number of customers—number of arcs between nodes].

Table 3
Comparison of results from the metaheuristic algorithm [MH] and the epsilon-constraint based algorithm with time limit [ReC] for large instances.

Group code Instance Total time (s) [MH] Total time (s) [ReC] 9SReC9 RPOS (ReC) 9SMH9 RPOS (MH) Dave Dmin

50-50-100-2 1 53715 24022 31 0.032 38 0.974 0.831 0.646

50-50-100-2 2 59076 24022 30 0.000 37 1.000 0.798 0.645

50-50-100-2 3 55026 24026 37 0.081 37 1.000 0.816 0.602

50-50-100-2 4 57049 24604 33 0.091 37 0.946 0.859 0.681

50-50-100-2 5 45386 24020 37 0.027 38 0.974 0.810 0.643

50-50-50-2 1 32901 24604 39 0.051 37 0.973 0.903 0.813

50-50-50-2 2 34144 24604 39 0.077 40 0.950 0.888 0.795

50-50-50-2 3 41621 24010 37 0.027 36 0.972 0.850 0.698

50-50-50-2 4 27755 24010 39 0.026 39 0.974 0.874 0.780

50-50-50-2 5 30655 24008 36 0.028 40 0.975 0.909 0.843

20-20-50-5 1 17756 24603 37 0.054 39 0.949 0.912 0.800

20-20-50-5 2 20145 24603 41 0.024 41 0.976 0.899 0.793

20-20-50-5 3 21887 24007 39 0.026 37 0.973 0.898 0.799

20-20-50-5 4 18764 24603 40 0.025 38 0.974 0.908 0.816

20-20-50-5 5 18001 24010 40 0.100 37 0.973 0.908 0.835

20-20-20-5 1 5029 24270 41 0.049 41 0.951 0.927 0.842

20-20-20-5 2 5426 24487 40 0.050 40 0.975 0.929 0.860

20-20-20-5 3 3597 24009 39 0.077 39 0.949 0.930 0.844

20-20-20-5 4 2764 24007 41 0.049 40 0.975 0.924 0.867

20-20-20-5 5 5209 24605 38 0.053 41 0.951 0.936 0.859

20-20-20-2 1 4680 22937 40 0.125 38 0.921 0.967 0.900

20-20-20-2 2 4100 23405 39 0.128 39 0.872 0.965 0.906

20-20-20-2 3 2847 23022 40 0.200 38 0.842 0.962 0.888

20-20-20-2 4 4238 23407 40 0.150 39 0.872 0.973 0.878

20-20-20-2 5 4612 23446 39 0.205 39 0.821 0.979 0.915

5-20-20-2 1 3615 22257 38 0.289 37 0.703 0.973 0.900

5-20-20-2 2 3097 22257 38 0.289 39 0.718 0.977 0.905

5-20-20-2 3 2346 22231 38 0.368 37 0.649 0.983 0.914

5-20-20-2 4 2403 21709 39 0.282 39 0.718 0.981 0.899

5-20-20-2 5 4425 21669 39 0.282 39 0.718 0.977 0.920

Group code indicates: [number of plants—number of potential distribution centers—number of customers—number of arcs between nodes].
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Fig. 10, the metaheuristic algorithm obtained a better efficient
frontier than the epsilon-constraint based algorithm. It was
observed in several experiments that obtaining a solution for
middle values of f2 (time objective) was more difficult, which
explains the form of the frontier obtained with the epsilon-
constraint based algorithm. Both algorithms achieved good solu-
tions when the problem approaches to the single-objective case in
the extremes of the efficient frontier.

In particular, for the instances of group 5-5-5-2 the total run
time for the metaheuristic algorithm was greater than the time
for the epsilon-constraint based algorithm. In this case the
instances are very small and the exact method can obtain true
efficient sets easily. However, the metaheuristic algorithm spent
more time in useless exploration of the solutions space without
achieving good approximate frontiers.

For the instances of groups 50-50-50-2 and 50-50-100-2 the
time of the metaheuristic algorithm was greater than the time for
the epsilon-constraint based algorithm. The explanation here is
different. In this case the epsilon-constraint based algorithm ran
with a time limit per each value of e. In all the instances of Table 3
this time limit was reached in almost all the values of e. The total
time is very similar for these groups of instances because the
number of points for e values to be explored was also similar. This
characteristic of the parameters come from the instance genera-
tion procedure described in Olivares-Benitez et al. (2012). In the
case of the metaheuristic algorithm, the run time depends on the
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size of the instance and then the time is expected to grow for
larger instances. The total run time in both algorithms was not
controlled.
6. Conclusions

The process of supply chain design involves decisions over several
aspects. The most treated decisions in the literature are facility
location, transportation flows, production levels, supplier selection,
and inventory levels. Nevertheless only the most recent works
include transportation channel selection. The supply chain design
problem addressed here incorporates the selection of the transporta-
tion channel that produces a cost-time tradeoff. Hence as a bi-
objective problem, the solution is not unique and a set of efficient
solutions must be obtained. The construction of a set of efficient
solutions follows an a posteriori approach where the decision maker
will take the final decision considering other criteria to select one
among the different solutions obtained. As noted in the literature
review section, this approach has not been addressed before in supply
chain design although some works have considered it partially.

In this work we designed a metaheuristic algorithm ad-hoc to
solve the problem treated. This metaheuristic incorporates
elements from greedy functions, Scatter Search, Path Relinking and
Mathematical Programming. It decomposes the construction of a
solution in a hierarchy of decisions. Some of the steps require the use
of mathematical programming software to solve a generalized assign-
ment problem and a transportation problem. This approach has been
formalized recently as ‘‘Matheuristics’’, which combine metaheuris-
tics and mathematical programming techniques (Maniezzo et al.,
2010). The literature review showed that traditional metaheuristics
like Genetic Algorithms and Tabu Search have been used frequently
for single objective versions of supply chain design problems.
Recently multiobjective versions of these metaheuristics and more
sophisticated methods have been used for multiobjective supply
chain design problems. However the matheuristic hybrid presented
here is a novelty in the field of supply chain design. The use of this
type of metaheuristic algorithms and the transportation channel
selection in the context of multiobjective supply chain design
represent major contributions of this paper.

The comparison in Table 2 showed that the metaheuristic
algorithm becomes competitive in terms of computing time with
the exact method for small instances, although the efficient
frontiers have lower cardinality and quality. However the approx-
imate efficient sets obtained with the metaheuristic algorithm are
not too far from those obtained with the exact method as was
observed in the example of Fig. 9.

For large instances, the results in Table 3 proved that the
metaheuristic algorithm becomes competitive in the three metrics
of comparison: computing time, cardinality and quality of the
efficient sets obtained. We believe that a great benefit comes from
integrating mathematical programming commercial software into the
algorithm to solve the transportation and generalized assignment
sub-problems. At the same time, the population-based approach of
the metaheuristic makes a good exploration of the solutions space
achieving well distributed efficient frontiers.

The model presented here may be used for the design of
supply chains of products with low complexity or products with
few components. The application may be in short supply chains
where lead time may be a competitive advantage or a requisite.
These characteristics apply well to perishable or seasonal pro-
ducts. Examples of these products can be found in the food
industry, pharmaceutical industry, chemical industry, and apparel
industry. The metaheuristic algorithm developed in this work
delivers several alternatives in the efficient frontier for the
decision maker. It also obtains solutions relatively fast, consider-
ing that the problem involves strategic decisions with impact in
the mid-to long term. Therefore several scenarios can be analyzed
easily with changing parameters of demand or costs considering
uncertainty, before taking a final decision.

The following are limitations and consequently possible exten-
sions to the model. The model may be extended to include
multiple commodities, direct flows from plants to customers,
and intra-echelon flows. Also routing decisions, technology selec-
tion, capacity levels and international supply chain aspects may
be considered. The transportation time has an effect in the size of
pipeline inventory and safety stock inventory that may be
considered into the cost objective function. Recent works in
multiobjective supply chain design include environmental and
risk criteria in parallel to economic objectives. The explicit
modeling of uncertainty of the demand and other parameters or
a multi-period approach may also be addressed. Nevertheless,
these elements change the structure of the problem and a major
modification of the metaheuristic algorithm should be done.

The results of the metaheuristic algorithm were compared
favorably to the results of an epsilon-constraint based algorithm.
However it may be interesting the comparison of the metaheur-
istic algorithm with other methods. The natural candidates for
this additional comparison are evolutionary algorithms like SPEA
2 (Zitzler et al., 2001) and NSGA-II (Deb et al., 2002). Moreover,
considering the structure of the epsilon-constrained model,
methods like decomposition schemes, Lagrangian relaxation,
and single-objective metaheuristics may be implemented in a
sequential algorithm to obtain the approximate efficient frontier.
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Pinto-Varela, T., Barbosa-Póvoa, A.P.F.D., Novais, A.Q., 2011. Bi-objective optimiza-
tion approach to the design and planning of supply chains: economic versus
environmental performances. Computers and Chemical Engineering 35 (8),
1454–1468.

Pishvaee, M.S., Farahani, R.Z., Dullaert, W., 2010. A memetic algorithm for bi-
objective integrated forward/reverse logistics network design. Computers and
Operations Research 37 (6), 1100–1112.

Resende, M.G.C., Ribeiro, C.C., 2003. Greedy Randomized Adaptive Search Proce-
dures. In: Glover, F., Kochenberger, G.A. (Eds.), handbook of Metaheuristics.
Kluwer Academic Publishers, New York, USA, pp. 219–250. (Chapter 8).

Sadjady, H., Davoudpour, H., 2012. Two-echelon, multi-commodity supply chain
network design with mode selection, lead-times and inventory costs. Compu-
ters and Operations Research 39 (7), 1345–1354.

Sahin, G., Sural, H., 2007. A review of hierarchical facility location models.
Computers and Operations Research 34 (8), 2310–2331.

Sousa, R., Shah, N., Papageorgiou, L.G., 2008. Supply chain design and multilevel
planning—an industrial case. Computers and Chemical Engineering 32 (11),
2643–2663.

Steuer, R.E., 1989. Multiple Criteria Optimization: Theory, Computation and
Application. Krieger Publishing Company, Malabar, USA.

Talbi, E., 2009. Metaheuristics: From Design to Implementation. Wiley, Hoboken,
USA.

Thomas, D.J., Griffin, P.M., 1996. Coordinated supply chain management. European
Journal of Operational Research 94 (1), 1–15.

Vidal, C.J., Goetschalckx, M., 1997. Strategic production-distribution models: a
critical review with emphasis on global supply chain models. European
Journal of Operational Research 98 (1), 1–18.

Zeng, D.D., 1998. Multi-issue Decision Making in Supply Chain Management and
Electronic Commerce. Ph.D. Dissertation. Graduate School of Industrial Admin-
istration and Robotics Institute, Carnegie Mellon University, Pittsburgh, USA,
December.

Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report, Swiss Federal Institute of Technol-
ogy (ETH), Zurich, Switzerland.


	A metaheuristic algorithm to solve the selection of transportation channels in supply chain design
	Introduction
	Literature review
	Problem description and mathematical model
	Exact and metaheuristic methods
	Exact method
	Metaheuristic method
	Hierarchical construction procedure
	General algorithm


	Computational evaluation
	True efficient sets
	Approximate efficient sets using the epsilon-constraint based algorithm
	Approximate efficient sets using the metaheuristic algorithm
	Comparisons

	Conclusions
	Acknowledgments
	References




